
Bhavana Dalvi Mishra1*, Lifu Huang2, Niket Tandon1, Wen-tau Yih1, Peter Clark1
1Allen Institute for AI, Seattle, 2Rensselaer Polytechnic Institute, Troy
{bhavanad,nikett,scottyih,peterc}@allenai.org, {warrior.fu}@gmail.com

Abstract
We present a new dataset and models for comprehending paragraphs about processes (e.g., photosynthesis), an important genre of text describing a dynamic world. The new dataset, ProPara, is the first to contain natural (rather than machine-generated) text about a changing world along with a full annotation of entity states (location and existence) during those changes (81k datapoints). The end-task, tracking the location and existence of entities through the text, is challenging because the causal effects of actions are often implicit and need to be inferred. We find that previous models that have worked well on synthetic data achieve only mediocre performance on ProPara, and introduce two new neural models that exploit alternative mechanisms for state prediction, in particular using LSTM input encoding and span prediction. The new models improve accuracy by up to 19%. The dataset and models are available to the community at http://data.allenai.org/propara.

1 Introduction
Building a reading comprehension (RC) system that is able to read a text document and to answer questions accordingly has been a long-standing goal in NLP and AI research. Impressive progress has been made in factoid-style reading comprehension, e.g., (Seo et al., 2017a; Clark and Gardner, 2017), enabled by well-designed datasets and modern neural network models. However, these models still struggle with questions that require inference (Jia and Liang, 2017).

Consider the paragraph in Figure 1 about photosynthesis. While top systems on SQuAD (Rajpurkar et al., 2016) can reliably answer lookup questions such as:

Q1: What do the roots absorb? (A: water, minerals)
Q2: Where is sugar produced? (A: in the leaf)

To answer Q2, it appears that a system needs knowledge of the world and the ability to reason with state transitions in multiple sentences: If carbon dioxide enters the leaf (stated), then it will be at the leaf (unstated), and as it is then used to produce sugar, the sugar production will be at the leaf too.

This challenge of modeling and reasoning with a changing world is particularly pertinent in text about processes, demonstrated by the paragraph in Figure 1. Understanding what is happening in such texts is important for many tasks, e.g., procedure execution and validation, effect prediction. However, it is also difficult because the world state is changing, and the causal effects of actions on that state are often implicit.

To address this challenging style of reading comprehension problem, researchers have created several datasets. The hAbI dataset (Weston et al., 2015) includes questions about objects moved throughout a paragraph, using machine-generated language over a deterministic domain with a small lexicon. The SCoNE dataset (Long et al., 2016) contains paragraphs describing a changing world...
state in three synthetic, deterministic domains, and assumes that a complete and correct model of the initial state is given for each task. However, approaches developed using synthetic data often fail to handle the inherent complexity in language when applied to organic, real-world data (Hermann et al., 2015; Winograd, 1972).

In this work, we create a new dataset, ProPara (Process Paragraphs), containing 488 human-authored paragraphs of procedural text, along with 81k annotations about the changing states (existence and location) of entities in those paragraphs, with an end-task of predicting location and existence changes that occur. This is the first dataset containing annotated, natural text for real-world processes, along with a simple representation of entity states during those processes. A simplified example is shown in Figure 2.

When applying existing state-of-the-art systems, such as Recurrent Entity Networks (Henaff et al., 2016) and Query-reduction Networks (Seo et al., 2017b), we find that they do not perform well on ProPara and the results are only slightly better than the majority baselines. As a step forward, we propose two new neural models that use alternative mechanisms for state prediction and propagation, in particular using LSTM input encoding and span prediction. The new models improve accuracy by up to 19%.

Our contributions in this work are twofold: (1) we create ProPara, a new dataset for process paragraph comprehension, containing annotated, natural language paragraphs about real-world processes, and (2) we propose two new models that learn to infer and propagate entity states in novel ways, and outperform existing methods on this dataset.

2 Related Work

Datasets: Large-scale reading comprehension datasets, e.g., SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017), have successfully driven progress in question answering, but largely targeting explicitly stated facts. Often, the resulting systems can be fooled (Jia and Liang, 2017), prompting efforts to create harder datasets where a deeper understanding of the text appears necessary (Welbl et al., 2017; Araki et al., 2016).

Procedural text is a genre that is particularly challenging, because the worlds they describe are largely implicit and changing. While there are few large datasets in this genre, two exceptions are bAbI (Weston et al., 2015) and SCoNE (Long et al., 2016), described earlier. bAbI has helped advance methods for reasoning over text, such as memory network architectures (Weston et al., 2014), but has also been criticized for using machine-generated text over a simulated domain. SCoNE is closer to our goal, but has a different task (given a perfect world model of the initial state, predict the end state) and different motivation (handling ellipsis and coreference in context). It also used a deterministic, simulated world to generate data.

Models: For answering questions about procedural text, early systems attempted to extract a process structure (events, arguments, relations) from the paragraph, e.g., ProRead (Berant et al., 2014) and for newswire (Caselli et al., 2017). This allowed questions about event ordering to be answered, but not about state changes, unmodelled by these approaches.

More recently, several neural systems have been developed to answer questions about the world state after a process, inspired in part by the bAbI dataset. Building on the general Memory Network architecture (Weston et al., 2014) and gated recurrent models such as GRU (Cho et al., 2014), Recurrent Entity Networks (EntNet) (Henaff et al., 2016) is a state-of-the-art method for bAbI. EntNet uses a dynamic memory of hidden states (memory blocks) to maintain a representation of the world state, with a gated update at each step. Memory keys can be preset ("tied") to particular entities in the text, to encourage the memories to record information about those entities. Similarly, Query Reduction

![Figure 2](image-url):
A (simplified) annotated paragraph from ProPara. Each filled row shows the existence and location of participants between each step ("?" denotes “unknown”, "-" denotes “does not exist”). For example in state0, water is located at the soil.

2 The ProcessBank (Berant et al., 2014) dataset is smaller and does not address state change, instead containing 585 questions about event ordering and event arguments.
We combine this span prediction approach with world throughout the whole process are represented. Where (3) is (2) When (step #) is e created (destroyed, moved)? (1) Is e created (destroyed, moved) in the process? (3) Where is e created (destroyed, moved from/to)?

If we can track the entities’ states through the process and answer such questions, many of the higher-level questions can be answered too. To do this, we now describe how these states are represented in ProPara, and how the dataset was built.

Process State Representation: The states of the world throughout the whole process are represented as a grid. Each column denotes a participant entity (a span in the paragraph, typically a noun phrase) that undergoes some creation, destruction, or movement in the process. Each row denotes the states of all the participants after a step. Each sentence is a step that may change the state of one or more participants. Therefore, a process paragraph with m sentences and n participants will result in an (m + 1) × n grid representation. Each cell l_{ij} in this grid records the location of the j-th participant after the i-th step, and l_{0j} stores the location of j-th participant before the process.4 Figure 2 shows one example of this representation.

Paragraph Authoring: To collect paragraphs, we first generated a list of 200 process-evoking prompts, such as “What happens during photosynthesis?”, by instantiating five patterns5, with nouns of the corresponding type from a science vocabulary, followed by manual rewording. Then, crowd-sourcing (MTurk) workers were shown one of the prompts and asked to write a sequence of event sentences describing the process. Each prompt was given to five annotators to produce five (independent) paragraphs. Short paragraphs (4 or less sentences) were then removed for a final total of 488 paragraphs describing 183 processes. An example paragraph is the one shown earlier in Figure 1.

Grid and Existence: Once the process paragraphs were authored, we asked expert annotators6 to create the initial grids. First, for each paragraph, they listed the participant entities that underwent a state change during the process, thus creating the column headers. They then marked the steps where a participant was created or destroyed. All state cells before a Create or after a Destroy marker were labeled as “not exists”. Each initial grid annotation was checked by a second expert annotator. For example, science exams pose such questions to test student’s understanding of the text in various ways.

3 The ProPara Dataset

Task: Our dataset, ProPara, focuses on a particular genre of procedural text, namely simple scientific processes (e.g., photosynthesis, erosion). A system that understands a process paragraph should be able to answer questions such as: “What are the inputs to the process?”; “What is converted into what?”; and “Where does the conversion take place?”3 Many of these questions reduce to understanding the basic dynamics of entities in the process, and we use this as our task: Given a process paragraph and an entity e mentioned in it, identify:

1. Is e created (destroyed, moved) in the process?
2. When (step #) is e created (destroyed, moved)?
3. Where is e created (destroyed, moved from/to)?

If we can track the entities’ states through the process and answer such questions, many of the higher-level questions can be answered too. To do this, we now describe how these states are represented in ProPara, and how the dataset was built.

Grid and Existence: Once the process paragraphs were authored, we asked expert annotators6 to create the initial grids. First, for each paragraph, they listed the participant entities that underwent a state change during the process, thus creating the column headers. They then marked the steps where a participant was created or destroyed. All state cells before a Create or after a Destroy marker were labeled as “not exists”. Each initial grid annotation was checked by a second expert annotator.

Locations: Finally, MTurk workers were asked to fill in all the location cells. A location can be “unknown” if it is not specified in the text, or a span of the original paragraph. Five grids for the same paragraph were completed by five different Turkers, with average pairwise inter-annotator agreement of 0.67. The end result was 81,345 annotations over

3 We only trace locations in this work, but the representation can be easily extended to store other properties (e.g., temperature) of the participants.

4 For example, science exams pose such questions to test student’s understanding of the text in various ways.

5 The five patterns are: How are structure formed? How does system work? How does phenomenon occur? How do you use device? What happens during process?

6 Expert annotators were from our organization, with a college or higher degree.
Figure 3: (a) ProLocal uses bidirectional attention to make local predictions about state change type and location (left), and then (b) propagates those changes globally using a persistence rule (right, shown for a single participant (the Light), local predictions shown in blue, propagations via persistence in green).

Table 1: ProPara vs. other procedural datasets.

<table>
<thead>
<tr>
<th>Sentences</th>
<th>bAbI</th>
<th>SCoNE</th>
<th>ProPara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questions</td>
<td>Synthetic</td>
<td>Natural</td>
<td>Natural</td>
</tr>
<tr>
<td># domains</td>
<td>20</td>
<td>20</td>
<td>183</td>
</tr>
<tr>
<td>Vocab #words</td>
<td>119</td>
<td>1314</td>
<td>2501</td>
</tr>
<tr>
<td># sentences</td>
<td>131.1k</td>
<td>72.9k</td>
<td>3.3k</td>
</tr>
<tr>
<td># unique sents</td>
<td>3.2k</td>
<td>37.4k</td>
<td>3.2k</td>
</tr>
<tr>
<td>Avg words/sent</td>
<td>6.5</td>
<td>10.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>

488 paragraphs about 183 processes. The dataset was then split 80/10/10 into train/dev/test by process prompt, ensuring that the test paragraphs were all about processes unseen in train and dev. Table 1 compares our dataset with bAbI and SCoNE.

4 Models

We present two new models for this task. The first, ProLocal, makes local state predictions and then algorithmically propagates them through the process. The second, ProGlobal, is an end-to-end neural model that makes all state predictions using global information.

4.1 ProLocal: A Local Prediction Model

The design of ProLocal consists of two main components: local prediction and commonsense persistence. The former infers all direct effects of individual sentences and the latter algorithmically propagates known values forwards and backwards to fill in any remaining unknown states.

4.1.1 Local Prediction

The intuition for local prediction is to treat it as a surface-level QA task. BiLSTMs with span prediction have been effective at answering surface-level questions, e.g., Given “Roots absorb water.” and “Where is the water?”, they can be reliably trained to answer “Roots” (Seo et al., 2017a). We incorporate a similar mechanism here.

Given a sentence (step) and a participant e in it, the local prediction model makes two types of predictions: the change type of e (one of: no change, created, destroyed, moved) and the locations of e before and after this step. The change type prediction is a multi-class classification problem, while the location prediction is viewed as a SQuAD-style surface-level QA task with the goal to find a location span in the input sentence. The design of this model is depicted in Figure 3(a), which adapts a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) recurrent neural network architecture (biLSTM) with attention for input encoding. The prediction tasks are handled by two different output layers. We give the detail of these layers below.

Input Encoding: Each word w_i in the input sentence is encoded with a vector $x_i = [v_w : v_e : v_x]$, the concatenation of a pre-trained GloVe (Pennington et al., 2014) word embedding v_w, indicator vari-
ables \(v_c \) on whether \(w_i \) is the specified participant and \(v_v \) on whether \(w_i \) is a verb (via a POS tagger).

Context Encoding: A biLSTM is used to contextualize the word representations in a given sentence. \(h_t \) denotes the concatenated output of the bidirectional LSTM for the embedded word \(x_t \), and encodes the word’s meaning in context.

Bilinear Attention: Given the participant and verb, the role of this layer is to identify which contextual word embeddings to attend to for generating the output. We first create \(h_{ev} \) by concatenating the contextual embedding of the participant and verb. We then use a bilinear similarity function

\[
sim(h_t, h_{ev}) = (h_t^T \cdot B \cdot h_{ev}) + b,
\]

similar to (Chen et al., 2016), to compute attention weights \(A_i \) over each word \(w_i \) in the sentence.

For state change type prediction, the words between the verb and participant may be important, while for the location tagging, contextual cues such as “from” and “to” could be more predictive. Hence, we train two sets of attention parameters resulting in weights \(A_1 \) and \(A_2 \) which are combined with the contextual vectors \(h_t \) as described below to produce hidden states \(o_1 \) and \(o_2 \) that are fed to the output layers. Here, \(|\text{step}|\) refers to number of words in the given step or sentence.

\[
\begin{align*}
o_1 &= \sum_i A_{1i} \cdot h_i \\
o_2 &= [(A_{21} \cdot h_1) \cdot (A_{22} \cdot h_2) \ldots : (A_{2|\text{step}|} \cdot h_{|\text{step}|})]
\end{align*}
\]

Output 1: State Change Type: We apply a feed-forward network on hidden state \(o_1 \) to derive the probabilities of the four state change type categories: Create, Destroy, Move and None.

Output 2: Location Spans: The second output is computed by predicting BIO tags (one of five tags: B-Before-LOC, I-Before-LOC, B-After-LOC, I-After-LOC, O) for each word in the sentence. We apply a feed-forward network on hidden state \(o_2 \) for word \(w_i \) to derive the probabilities of these location tags. Notice that if the change type is predicted as “Create” (or “Destroy”) then only the “after” (or “before”) location prediction is used.

Training: We train the state change type prediction and location tag prediction models jointly, where the loss is the sum of their negative log likelihood losses. We use Adadelta (Zeiler, 2012) with learning rate 0.2 to minimize the total loss.

4.1.2 Commonsense Persistence

The local prediction model will partially fill in the state change grid, showing the direct locational effects of actions (including “not exists” and “unknown location”). To complete the grid, we then algorithmically apply a commonsense rule of persistence that propagates locations forwards and backwards in time where locations are otherwise missing. Figure 3(b) shows an example when applying this rule, where '?' indicates “unknown location”. This corresponds to a rule of inertia: things are by default unchanged unless told otherwise. If there is a clash, then the location is predicted as unknown.

4.2 ProGlobal: A Global Prediction Model

Unlike ProLocal, the design principle behind ProGlobal is to model the persistence of state information within the neural model itself, rather than as a post-processing step. ProGlobal infers the states of all participants at each step, even if they are not mentioned in the current sentence, using: (1) the global context (i.e., previous sentences), and (2) the participant’s state from the previous step.

Given a sentence (step) with its context (paragraph) and a participant \(e \), ProGlobal predicts the existence and location of \(e \) after this step in two stages. It first determines the state of \(e \) as one of the classes (“not exist”, “unknown location”, “known location”). A follow-up location span prediction is made if the state is classified as “known location”.

Figure 4 shows ProGlobal’s neural architecture, where the left side is the part for state prediction at each step, and the right side depicts the propagation of hidden states from one step to the next. We discuss the detail of this model below.

Input Encoding: Given a participant \(e \), for each step, we take the entire paragraph as input. Each word \(w \) in the paragraph is represented with three types of embeddings: the general word embedding \(v_w \), a position embedding \(v_d \) which indicates the relative distance to the participant in the paragraph, and a sentence indicator embedding \(v_s \) which shows the relative position (previous, current, following) of each sentence in terms of the current step \(i \). Both the position embedding and the sentence indicator embedding are of size 50 and are randomly initialized and automatically trained by the model. We concatenate these three types of embeddings to represent each word \(x = [v_w : v_d : v_s] \).

Context Encoding: Similar to ProLocal, we use a biLSTM to encode the whole paragraph and use
The start probability distribution \(s^P_{t-1} \in \mathbb{R}^{|P|} \) predicted from step \(t-1 \), and the contextual embeddings \(\tilde{H}^P_t \) of words in the current step:

\[
\tilde{H}^P_t = \sum_{i=1}^{\lfloor|P|/2\rfloor} s^P_{t-1} \cdot \tilde{h}^P_i
\]

where \(\tilde{H}^P_t \) is a sum of word vectors in the paragraph, weighted by the start probabilities from the previous step \(t-1 \). \(\varphi_i^P \) is the encoded vector representation for the \(i \)-th word in the paragraph. We then concatenate \(\tilde{H}^P_t \) and \(\varphi_i^P \), and apply a feed-forward network to obtain the start probability distribution for step \(t \): \(s^P_t = \text{softmax}(W_s \cdot [\tilde{H}^P_t : \varphi_i^P] + b_s) \). Similarly, to predict the end word of the span, we use the start probability distribution \(s^P_t \) of step \(t \) and \(\tilde{H}^P_t \), and apply another LSTM and feed-forward networks to obtain the probabilities. For state \(0 \) (the initial location before any steps), we directly feed the sequence of the vectors from the encoding layer to a linear transformation to predict the location start, and apply the same architecture to predict the location end.

Training: For each participant \(e \) of paragraph \(P \), the objective is to optimize the sum of the negative log likelihood of the category classification and location span prediction:\(^8\) We use Adam\(\) to optimize the models with learning rate 0.5.

\(^8\)We compute the loss for location span prediction only when the category is annotated as “known location.”
Table 2: Design decisions in the four neural models.

<table>
<thead>
<tr>
<th></th>
<th>Sentence Encoding</th>
<th>Intermediate State Represent.</th>
<th>Propagation through time</th>
<th>Answer Decoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>EntNet</td>
<td>positional encoding</td>
<td>Dynamic memory blocks</td>
<td>Gated propagation</td>
<td>Softmax classification</td>
</tr>
<tr>
<td>QRN</td>
<td>positional encoding</td>
<td>Single latent vector h</td>
<td>Gated propagation of h</td>
<td>Softmax classification</td>
</tr>
<tr>
<td>ProLocal</td>
<td>LSTM</td>
<td>Explicit symbolic</td>
<td>Algorithmic LSTM</td>
<td>Span prediction</td>
</tr>
<tr>
<td>ProGlobal</td>
<td>LSTM</td>
<td>Distribution over spans</td>
<td></td>
<td>Span prediction</td>
</tr>
</tbody>
</table>

5 Experiments and Analysis

5.1 Tasks & Evaluation Metrics

As described in Section 3, the quality of a model is evaluated based on its ability to answer three categories of questions, with respect to a given participant e:

(Cat-1) **Is e created (destroyed, moved) in the process?**
(Cat-2) **When** (step#) is e created (destroyed, moved)?
(Cat-3) **Where** is e created (destroyed, moved from/to)?

These questions are answered by simple scans over the state predictions for the whole process. (Cat-1) is asked over all participants, while (Cat-2) and (Cat-3) are asked over just those participants that were created (destroyed, moved). The accuracy of the answers is used as the evaluation metric, except for questions that may have multiple answers (e.g., “When is e moved?”). In this case, we compare the predicted and gold answers and use the F1 score as the “accuracy” of the answer set prediction.9

For questions in category (3), an answer is considered correct if the predicted location is identical to, or a sub-phrase of, the labeled location (typically just one or two words), after stop-word removal and lemmatizing.

5.2 Baseline Methods

We compare our models with two top methods inspired by the bAbI dataset, Recurrent Entity Networks (EntNet) and Query Reduction Networks (QRN), described earlier in Section 2. Both models make different use of gated hidden states to propagate state information through time, and generate answers using softmax. The detailed comparisons in their design are shown in Table 2.

We use the released implementations10 (with default hyper-parameter values), and retrained them on our dataset, adapted to the standard bAbI QA format. Specifically, we create three separate variations of data by adding three bAbI-style questions after each step in a paragraph, respectively:

Q1. “Does e exist?” (yes/no)
Q2. “Is the location of e known?” (yes/no)
Q3. “Where is e?” (span)

The template Q1 is applied to all participants. Q2 will only be present in the training data if Q1 is “yes”, and similarly Q3 is only present if Q2 is “yes”. These three variations of data are used to train three different models from the same method.

At test time, we cascade the questions (e.g., ask Q2 only if the answer to the Q1 model is “yes”), and combine the model outputs accordingly to answer the questions in our target tasks (Section 5.1).

We also compare against a rule-based baseline and a feature-based baseline. The rule-based method, called ProComp, uses a set of rules that map (a SRL analysis of) each sentence to its effects on the world state, e.g., IF X moves to Y THEN after: at(X,Y). The rules were extracted from VerbNet (Schuler, 2005) and expanded. A full description of ProComp is available at (Clark et al., 2018).

The feature-based method uses a Logistic Regression (LR) classifier to predict the state change type (Move, Create, etc.) for each participant + sentence pair, then a NER-style CRF model to predict the from/to locations as spans of the sentence. The LR model uses bag-of-word features from the sentence, along with a discrete feature indicating whether the participant occurs before or after the verb in the given sentence. The CRF model uses standard NER features including capitalization, a verb indicator, the previous 3 words, and the POS-tag of the current and previous word. Similar to our ProLocal model, we apply commonsense persistence rules (Section 4.1.2) to complete the partial state-change grids predicted by both these baselines.

5.3 Results

Parameter settings: Both our models use GloVe embeddings of size 100 pretrained on Wikipedia 2014 and Gigaword 5 corpora11. The number of hidden dimensions for the biLSTM are set to

9This approach has been adopted previously for questions with multiple answers (e.g., (Berant et al., 2013)). For questions with only one answer, F1 is equivalent to accuracy.
11https://nlp.stanford.edu/projects/glove
were designed with a di

Table 3: Model accuracy on the end task (test partition of ProPara). Questions are (Section 5.1): (Cat-1) Is e_i created (destroyed, moved)? (Cat-2) When is e_i created (?). (Cat-3) Where is e_i created (?).

This suggests that it has not generalized as well to unseen vocabulary (25% of the test vocabulary is not present in the train/dev partitions of ProPara).

When comparing our two models, it is interesting that ProGlobal performs substantially better than ProLocal. One possible cause of this is cascading errors in ProLocal: if a local state prediction is wrong, it may still be propagated to later time steps without any potential for correction, thus amplifying the error. In contrast, ProGlobal makes a state decision for every participant entity at every time-step, taking the global context into account, and thus appears more robust to cascading errors. Furthermore, ProGlobal’s gains are mainly in Cat-2 and Cat-3 predictions, which rely more heavily on out-of-sentence cues. For example, 30% of the time the end-location is not explicitly stated in the state-change sentence, meaning ProLocal cannot predict the end-location in these cases (as no sentence span contains the end location). ProGlobal, however, uses the entire paragraph and may identify a likely end-location from earlier sentences.

Finally, we computed a human upper bound for this task (last column of Table 3). During dataset creation, each grid was fully annotated by 5 different Turkers (Section 3). Here, for each grid, we identify the Turker whose annotations result in the best score for the end task with respect to the other Turkers’ annotations. The observed upper bound of ~80% suggests that the task is both feasible and well-defined, and that there is still substantial room for creating better models.

5.4 Analysis

To further understand the strengths and weaknesses of our systems, we ran the simplified paragraph in Figure 2 verbatim through the models learned by ProLocal and ProGlobal. The results are shown in Figure 6, with errors highlighted in red.

ProLocal correctly interprets “Light from the sun and CO2 enters the leaf.” to imply that the light was at the sun before the event. In addition,
as there were no earlier mentions of light, it propagates this location backwards in time, (correctly) concluding the light was initially at the sun. However, it fails to predict that “combine” (after state 3) destroys the inputs, resulting in continued prediction of the existence and locations for those inputs. One contributing factor is that ProLocal’s predictions ignore surrounding sentences (context), potentially making it harder to distinguish destructive vs. non-destructive uses of “combine”.

ProGlobal also makes some errors on this text, most notably not realizing the light and CO2 exist from the start (rather, they magically appear at the leaf). Adding global consistency constraints may help avoid such errors. It is able to predict the sugar is formed at the leaf, illustrating its ability to persist and transfer location information from earlier sentences to draw correct conclusions.

We additionally randomly selected 100 prediction errors from the dev set for ProGlobal, and identified four phenomena contributing to errors:

1. **Implicit Creation/Destruction**: In 37% of the errors, the information about the creation or destruction of a participant is implicit or missing, which resulted in existence classification errors. For example, in the sentences “A fuel goes into the generator. The generator converts mechanical energy into electrical energy.”, “fuel” is implicitly consumed as the generator converts mechanical energy into electrical energy.

2. **Location Errors**: In 27% of the examples, the location spans were not perfectly identified as follows: absolute wrong location span prediction (17%), longer span prediction (6%), and location prediction from different granularity (4%).

3. **Complex Syntax**: In 13% of the examples, a moving participant and its target location are separated with a wide context within a sentence, making it harder for the model to locate the location span.

4. **Propagation**: ProGlobal tends to propagate the previous location state to next step, which may override locally detected location changes or propagate the error from previous step to next steps. 9% of the errors are caused by poor propagation.

5.5 Future Directions

This analysis suggests several future directions:

- **Enforcing global consistency constraints**: e.g., it does not make sense to create an already-existing entity, or destroy a non-existent entity. Global constraints were found useful in the earlier ProRead system (Berant et al., 2014).

- **Data augmentation through weak supervision**: additional training data can be generated by applying existing models of state change, e.g., from VerbNet (Kipper et al., 2008), to new sentences to create additional sentence-state pairs.

- **Propagating state information backwards in time**: if \(e_j \) is at \(l_{ij} \) after \(step_i \), it is likely to also be there at \(step_{i-1} \) given no information to the contrary. ProGlobal, EntNet, and QRNs are inherently unable to learn such a bias, given their forward-propagating architectures.

6 Conclusion

New datasets and models are required to take reading comprehension to a deeper level of machine understanding. As a step in this direction, we have created the ProPara dataset, the first to contain natural text about a changing world along with an annotation of entity states during those changes. We have also shown that this dataset presents new challenges for previous models, and presented new models that exploit ideas from surface-level QA, in particular LSTM input encoding and span prediction, producing performance gains. The dataset and models are available at http://data.allenai.org/propara

Acknowledgements: We are grateful to Oren Etzioni, Carissa Schoenick, Mark Neumann, and Isaac Cowhey for their critical contributions.
References

