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Fig. 1: FigureSeer is an end-to-end framework for parsing result-figures in research
papers. It automatically localizes figures, classifies them, and analyses their content
(center). FigureSeer enables detailed indexing, retrieval, and redesign of result-figures,
such as highlighting specific results (top-left), reformatting results (bottom-left), com-
plex query answering (top-right), and results summarization (bottom-right).

Abstract. ‘Which are the pedestrian detectors that yield a precision
above 95% at 25% recall?’ Answering such a complex query involves
identifying and analyzing the results reported in figures within several
research papers. Despite the availability of excellent academic search en-
gines, retrieving such information poses a cumbersome challenge today as
these systems have primarily focused on understanding the text content
of scholarly documents. In this paper, we introduce FigureSeer, an end-
to-end framework for parsing result-figures, that enables powerful search
and retrieval of results in research papers. Our proposed approach au-
tomatically localizes figures from research papers, classifies them, and
analyses the content of the result-figures. The key challenge in analyzing
the figure content is the extraction of the plotted data and its association
with the legend entries. We address this challenge by formulating a novel
graph-based reasoning approach using a CNN-based similarity metric.
We present a thorough evaluation on a real-word annotated dataset to
demonstrate the efficacy of our approach.

1 Computer Vision for Scholarly Big Data

Academic research is flourishing at an unprecedented pace. There are already
over 100 million papers on the web [1] and many thousands more are being added
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every month [2]. It is a Sisyphean ordeal for any single human to cut through this
information overload and be abreast of the details of all the important results
across all relevant datasets within any given area of research. While academic-
search engines like Google Scholar, CiteSeer, etc., are helping us discover relevant
information with more ease, these systems are inherently limited by the fact that
their data mining and indexing is restricted to the text content of the papers.

Research papers often use figures for reporting quantitative results and anal-
ysis, as figures provide an easy means for communicating the key experimental
observations [3]. In many cases, the crucial inferences from the figures are often
not explicitly stated in text (as humans can easily deduce them visually) [4].
Therefore failing to parse the figure content poses a fundamental limitation to-
wards discovering important citations and references. This paper presents Fig-
ureSeer, a fully-automated framework for unveiling the untapped wealth of figure
content in scholarly articles (see figure 1).

Why is figure parsing hard? Given the impressive advances in the analysis
of natural scene images witnessed over the past years, one may speculate that
parsing scholarly figures is a trivial endeavor. While it is true that scholarly
figures are more structured than images of our natural world, inspecting the
actual figure data exposes a plethora of complex vision challenges:

Strict requirements: Scholarly figures expect exceptional high-levels of parsing
accuracy unlike typical natural image parsing tasks. For example, in figure 2(c),
even a small error in parsing the figure plot data changes the ordering of the
results, thereby leading to incorrect inferences.

High variation: The structure and formatting of scholarly figures varies greatly
across different papers. Despite much research in engendering common design
principles, there does not seem to be a consensus reached yet [5, 6]. Therefore
different design conventions are employed by authors in generating the figures,
thereby resulting in wide variations (see figure 2).

Heavy clutter and deformation: Even in the best case scenario, where figures
with a common design convention are presented, there still remains the difficulty
of identifying and extracting the plot data amidst heavy clutter, deformation and
occlusion within the plot area. For example, in figure 2(d), given just the legend
symbol template for ‘h3 LM-HOP availability’ method, extracting its plot data
is non-trivial due to the heavy clutter and deformation (also see figure. 4).

While color is an extremely valuable cue for discriminating the plot data,
it may not always be available as many figures often reuse similar colors (see
figure 2), and many older papers (even some new ones [7, 8]) are published
in grayscale. Moreover, unlike natural image recognition tasks where desired
amount of labeled training data can be obtained to train models per category,
figure parsing has the additional challenge where only a single exemplar (i.e., the
legend symbol) is available for model learning. All these challenges have discour-
aged contemporary document retrieval systems from harvesting figure content
other than simple meta-data like caption text.

Overview: The primary focus of our work is to parse result-figures within re-
search papers to help improve search and retrieval of relevant information in the
academic domain. The input to our parsing system is a research paper in .pdf
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Fig. 2: There is high variation in the formatting of figures: some figures position the
legend within the plot area, while others place it outside. Within the legend, some
figures have symbols on the right of the text, while others on the left. The presence of
heavy occlusions and deformations also poses a challenge.

format and the output is a structured representation of all the results-figures
within it. The representation includes a detailed parse of each figure in terms of
its axes, legends, and their corresponding individual plot data. We focus our at-
tention on result-figures as they summarize the key experimental analysis within
a paper. More specifically, within our corpus of papers, we found 2D-graphical
plots plotting continuous data (such as precision-recall, ROC curves, etc.) to be
most popular and frequent.

In this paper, we present a novel end-to-end framework that automatically
localizes all figures from a research paper, classifies them, and extracts the con-
tent of the result-figures. Our proposed approach can localize a variety of figures
including those containing multiple sub-figures, and also classify them with great
success by leveraging deep neural nets. To address the challenges in parsing the
figure content, we present a novel graph-based reasoning approach using convo-
lutional neural network (CNN) based similarity functions. Our approach is at-
tractive as it not only handles the problems with clutter and deformations, but
is also robust to the variations in the figure design. As part of this work, we also
introduce thorough evaluation metrics, along with a fully-annotated real-world
dataset to demonstrate the efficacy of our parsing approach. Finally, to demon-
strate the potential unleashed by our approach, we present a query-answering
system that allows users to query figures and retrieve important information.

In summary, our key contributions are: (i) We introduce and study the prob-
lem of scholarly figure parsing. (ii) We present a novel end-to-end framework
that automatically localizes figures, classifies them, and analyzes their content.
(iii) We present a thorough evaluation on a real-word dataset to demonstrate
the efficacy of our approach. (iv) We demonstrate the utility of our parsing ap-
proach by presenting a query-answering system that enables powerful search and
retrieval of results in research papers using rich semantic queries. (v) Finally, we
release a fully-annotated dataset, along with a real-world end-to-end system for
spurring further research. We hope our work will help kick-start the challenging
domain of vision for scholarly big data.

2 Related Work

Figure Extraction & Classification Localizing objects within natural images
is a well-studied problem in computer vision. However, localizing figures within
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research papers has only recently become an area of interest. While many ‘off-
the-shelf’ tools exist that can extract embedded images from .pdf files [9], these
tools neither extract vector-graphic based images nor the associated captions of
the figures. Recent works [10–12] have explored figure extraction by processing
the PDF primitives. The work of [11] is interesting as it extracts a wide variety
of figures along with their captions. In this paper, we build upon this work by
augmenting their method with sub-figure localization.

Classifying scholarly figures has also recently become an area of research
interest [6, 13]. The work of [6] used a visual bag-of-words representaiton with
an SVM classifier for classifying figures. In this paper, we leverage the recent
success of CNNs and present an improved classifier that surpasses the state-of-
the-art performance.
Figure Analysis Much attention in the document analysis community has been
devoted towards analyzing the document text content [14–17], but analyzing the
figure content within the documents has received relatively little focus. Given the
challenges in figure parsing (see section 1), most works have either resorted to
manual methods [18, 19] or restricted their focus to limited domains with strong
assumptions [13, 20, 6].

In [20], graphical plots were assumed to plot only a single variable. Further,
rather than extracting the plot data, their focus was limited to recognizing the
intended message (e.g., rising trend, falling trend, etc.,) of the plot. [6] pre-
sented a simple method for parsing bar charts. Their method located the bars
by extracting connected components and then used heuristics to associate the
marks with the axes. While their method achieved impressive results, its focus
was limited to bar plots with color and those having a linear-axis scale. Fur-
ther, their method failed to detect and leverage the legend information. Our
proposed method circumvents these limitations, and thereby helps improve the
generalizability and robustness of their bar parser as well.
Query-Answering Challenges with figure parsing have discouraged contem-
porary document retrieval systems from harvesting the figure content. Most
existing academic search engines respond to queries by only using the textual
meta-data content about the figures, such as the caption text, or their mentions
in the body text [21–23, 17]. While there exists a few methods that have consid-
ered using content from tables [15], to the best of our knowledge, there does not
exist any method to query research papers by understanding figure content.

3 Figure Parsing Approach

Our figure parser first extracts figures from a given .pdf file (section. 3.1), then
segregates the figures (section. 3.2), and finally analyzes the content of the result-
figures (section. 3.3). Fig. 1(center) gives an overview of our overall framework.

3.1 Figure Extraction

Given the deluge of papers, it is desirable to have a scalable and robust approach
for extracting figures. We leverage the work of [11] for figure extraction where a



FigureSeer: Parsing Result-Figures in Research Papers 5

method for automatically localizing figures (using bounding boxes) along with
their captions was presented. Their method analyzes the structure of individual
pages by detecting chunks of body text, and then locates the figure areas by
reasoning about the empty regions. The method was demonstrated to achieve
high accuracy (F1 > 0.9), while being computationally efficient (∼1 sec/paper).

A key limitation of [11] is its inability to localize individual figures within a
figure containing multiple subfigures. Research papers often employ subfigures
to report related sets of experimental results together. Given the frequent use
of subfigures, we use an iterative method for separately localizing subfigures.
More specifically, given an extracted figure, we iteratively decompose it into
subfigures by identifying valid axis-aligned splits using the following criteria:
(i) Both resulting regions must have an aspect ratio between 1 : c1 and c1 : 1
(c1 = 5); (ii) The ratio of the areas of the resulting regions must be between 1 : c2
and c2 : 1 (c2 = 2.5). The first criterion ensures that we avoid splits resulting in
extremely narrow subfigures (that often happens by accidentally splitting off an
axis or legend label). The second criterion enforces a weak symmetry constraint
between the resulting halves (as subfigures are all often approximately of the
same size). Our proposed method is simple, efficient and achieves promising
results (see supplementary for more details).

3.2 Figure Classification

While graphical plots are the most common result-figures within research pa-
pers, there are often other figure types (natural images, flow charts, etc.,) found
amongst the extracted figures. Therefore, we use a figure classifier to segregate
the different figures and identify the relevant graphical plots. Convolutional Neu-
ral Networks (CNNs) have recently emerged as the state-of-the-art for classifying
natural image content. Encouraged by the positive results in the domain of nat-
ural images, here we study their performance at large-scale figure classification.

We evaluate two network architectures: AlexNet [24] and ResNet-50 [25].
Both networks were pretrained on the 1.2 million images from ImageNet [26]
and then fine-tuned for our figure classification task. It is well known that CNNs
consume and benefit from large training sets. Section. 4 describes the dataset
collected for training our network.

3.3 Figure Analysis

Given all the segregated graph plots, we next analyze their content to obtain
their corresponding detailed structured representation. This involves analyzing
the figure axes, the figure legend, and the figure plot-data (see figure. 3).

Parsing Axes Parsing the axes involves determining their position, labels, and
scales. Detecting the axes position helps in identifying the bounds of the plot
area. Therefore we first detect the axes by finding all text boxes within the
figure that correspond to the axis tick labels (e.g., ‘0’, ‘0.2’, ‘0.4’, ‘0.6’ on x-axis
in figure. 3) . This is done by detecting series of (numeric) text boxes aligned in
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Fig. 3: Our figure analyzer first parses the figure axes, then the legend contents, and
finally extracts and associates the plotted data to their legend entries.

a straight line (representing the axis tick labels). More specifically, the y-axis (or
x-axis) is determined by detecting the largest number of (numeric) text boxes
that all share a common x (or y) pixel coordinate, breaking ties by choosing the
leftmost qualifying x (or y) coordinate.

Each axis is almost always associated with a textual label that helps towards
the interpretation of the graphical plot (e.g., the label ‘Precision’ for y-axis
in figure. 3). Given the common convention of placing the axis label in the
immediate vicinity of the axis-tick labels, we detect the y-axis label by identifying
the rightmost textbox to the left of the y-axis tick labels, and the x-axis label
by finding the highest textbox below the x-axis tick labels.

While most plots use a linear axis scale, it is not uncommon for figures to
have a logarithmic scale. Therefore we determine the axis scale (linear, logarith-
mic) by fitting separate regressors [27] (linear and exponential link functions) to
model the data values, and then pick the model with the lowest deviance under
a threshold. The regressors map the axis tick label values to their corresponding
pixel coordinate values. These models are in turn used for transforming all the
plotted data from their pixel-coordinate scale to their data-coordinate scale.

Parsing Legend Graphical plots always use a legend as a guide to the symbols
used when plotting multiple variables. Typically the legend has entries consisting
of (label, symbol) pairs, where the labels are the variable names (e.g., ‘classifier
only’ in figure. 3) and the symbols give an example of its appearance. As high-
lighted in section. 1, there is huge variation in the placement and format of
legends across figures. Legend entries may either be arranged vertically, horizon-
tally, or in a rectangle, and they may be found either outside the plot area or
anywhere inside (see illustration in supplementary). Further, the legend symbols
may be placed either to the right or left of the legend labels, and may have vary-
ing lengths with spaces (e.g. the dashed symbol for ‘classifier only’ in figure. 3).
To address this challenge, our legend parser first identifies the legend labels, and
then locates their corresponding symbols.

We pose the problem of legend label identification as a text classification
problem, i.e., given a text box within the figure, is it a legend label or not? For
classification, we use a random-forest classifier [28] with each textbox represented
using a six-dimensional feature f = {tx, ty, tl, tn, t#v, t#h}, where tx, ty refer to
the normalized x, y center coordinates of the text box, tl is the text string length,
tn is a Boolean indicating the text string to be numeric or not, and t#v, t#h

denote the number of other vertically and horizontally aligned textboxes.
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For localizing the symbols s corresponding to the identified legend labels t,
we first need to determine their side (i.e., left or right of the text). This is done
by generating two candidate rectangular boxes to the left and right of each label
(sleft, sright) with height h = th (i.e., textbox height) and width w = k ∗ th
(k = 10). Each candidate is then assigned a score corresponding to its normal-
ized non-background pixel density. The candidate scores across all labels on each
side (i.e., left or right) are multiplied and the side with the highest score product
is chosen. The selected candidate boxes are subsequently cropped to obtain the
final symbol bounds (see supplementary for more details).

Parsing Plot-data Our approach to parsing the plotted data is to formulate it
as an optimal path-finding problem: given a legend symbol template s and the ex-
tent of the plot area Wn×m, find its optimum path Ps = {xi}ni=1 = {(xi, yi)}ni=1,
such that the following energy function is optimized:

E(Ps) =

n∑
i=1

φi(xi) +

n−1∑
i=1,j=i+1

φij(xi,xj),

s.t., ∀i, 1 ≤ yi ≤ m, 1 ≤ xi ≤ n, xi+1 = xi + 1.

The unary potential φi(xi) = αf(xi) measures the likelihood of a pixel xi to
belong to the path given its features f(xi). The pairwise potential φij(xi,xj) =
βf(xi,xj) is used to encourage smooth transitions between adjacent pixels (xi,xj)
by setting the pairwise features based on their slope i.e., f(xi,xj) = (yi − yj)2.
Inference under this model translates to finding the highest scoring path, which
can be done using dynamic programming in linear time [29].

For learning the model weights (α, β), we use a rank SVM formulation [30].
The training examples for the ranker are pairs of the form (Ps, P

′
s) with the goal

of ranking all sub-optimal paths Ps to be lower than the ground-truth path P ′s.
A path is defined to be suboptimal if its score (using our evaluation metric as
defined in section 5) is lower than a threshold. We use a bootstrapping procedure
that mines hard negative examples to train the ranker [31].

Feature representation f(xi) plays a crucial role towards the success of our
model. Given the presence of heavy occlusions and deformations of the plot-
ted data, simply convolving the legend symbol s with the plot area W using
standard gradient-based features [31] fails to yield a robust representation (see
figure. 4). To address this challenge, we instead derive our feature representation
by learning a feature function using CNNs [32, 33] that allows us to implicitly
model the various patch transformations.

We learn an embedding of image patches to a low dimensional feature vector
using a Siamese network based on [32]. Each branch of the network consists of
3 convolutional layers followed by a fully connected layer, with ReLU and max
pooling between layers. The input of each branch is a 64×64 grayscale image
patch. The final layer of each branch projects this input to a 256 dimensional fea-
ture vector. Each training example consists of a legend symbol patch and a plot
patch. The legend symbol patch is generated by padding and/or cropping the
annotated legend symbol to 64×64 pixels. For positive examples, the plot patch
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Fig. 4: Similarity maps using standard convolution for two different symbols. Simply
convolving the symbol template with the plot area fails to discriminate well between
the plots. For e.g., the red dashed-line symbol obtains a high response on patches
corresponding to the red solid-line. Our approach circumvents this problem by learning
similarity functions using CNNs.

is a 64×64 patch centered on a point on the symbol’s corresponding ground-
truth trajectory in the plot area. Negative pairs are obtained by sampling plot
patches both randomly and from other symbol trajectories.

The network is trained using a contrastive loss function [34]. We augment
our data by flipping both symbol and plot patches in pairs horizontally. During
training, we use two feature networks with the constraint that the two networks
share the same parameters. At testing, we use a single network where we inde-
pendently pass a symbol patch s as well as patches from the plot area W through
it and obtain their output representations. The final feature map for the symbol
s is then estimated as the L2 similarity between the output representations.

Along with these CNN-based similarity features, we also use the following
pixel-based similarity features to define our unary features f(xi): (i) symbol
convolution: rotationally convolving the symbol patch s with the plot area W ,
which helps in capturing local visual similarities [35]; (ii) connected-component
size: finding regions within the plot area W having similar connected-component
statistics as the symbol patch s, which helps in differentiating patterns of dashes
with varying lengths or thickness [36]; (iii) color match: finding regions in the
plot area W that have the same color as the symbol patch s, which helps in
differentiating unique colored plots; (iv) breathing: a constant valued feature
map, which helps in handling plots whose domain does not cover the full extent
of the x-axis (see supplementary materials for more details).
Implementation details: Training our similarity network takes 20 hours on a
Titan X GPU using Caffe [37]. Parsing a new figure takes 8 seconds on an Intel
Xeon E5-1630 CPU, and 40 seconds for generating the CNN feature on our GPU.

4 FigureSeer Dataset

The availability of a standardized dataset plays a crucial role in training and
evaluating algorithms as well as in driving research in new and more challenging
directions. Towards this end, we have built an annotated figure parsing dataset
using over 20,000 papers covering five different research areas (CVPR, ICML,
ACL, CHI, AAAI) obtained from the 1 million CiteSeerX papers [17] indexed
by Semantic Scholar [38]. Processing the 20,000 papers using the method of [11]
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Categories Graph plots Flowcharts Algorithms Bar plots Scatter Tables Other Mean

[6] 83% 63% 73% 80% 41% 64% 75% 75%
AlexNet 82% 72% 71% 85% 49% 57% 93% 84%
ResNet-50 89% 75% 77% 87% 59% 67% 93% 86%

Data Stats 20.6% 12.6% 6.8% 6.1% 2.6% 2.4% 48.9% 14.3%

Table 1: Figure Classification results across 7 categories. Using CNNs outperforms the
previous state of the art approach [6], which used a visual bag-of-words model, by
a large margin (86% vs. 75%). The last row lists the distribution of data across the
categories in our dataset of 60000 samples.

yielded over 60000 figures. All these figures were then annotated using mechan-
ical turk [39] for their class labels (scatterplot, flowchart, etc.,).

Of all the figures annotated as graph plots, we randomly sampled over 600
figures for further detailed annotations. Labelling the figures with their detailed
annotations, i.e., axes, legends, plot data, etc., is a complex and multi-step task,
making it more difficult to crowdsource over mechanical turk [40]. Therefore we
trained in-house annotators to label the figures using a custom-made annotation
tool. For each figure, the annotators annotated the axes (position, title, scale),
the legend (labels, symbols), and the plotted data for each legend entry. Anno-
tating the figures yielded 1272 axes, 2183 legend entries and plots. 55% of the
figures are colored, while 45% are grayscale. An overview video of our annotation
interface as well as our complete annotated dataset is available on our project
page.

5 Figure Parsing Results

Figure Classification We used the 60000 figures from our dataset to study
the performance of our network. The figures were randomly split into two equal
halves (30000 each) for training and testing. Table 1 summarizes our results in
comparison to the previous state of the art system of [6]. Our best average clas-
sification accuracy was 86% using ResNet-50 [25], which is significantly higher
than the 75% of [6].

Figure Analysis Evaluating figure analysis results is a challenging endeavor as
it demands detailed annotation of the figures within research papers. Therefore
most previous works have restricted their evaluation to small datasets or man-
ual inspection [20, 6]. The availability of our detailed annotated dataset allows
thorough analyses of the various components of our approach. We ran figure
analysis experiments on the graph-plot figures from our dataset. The figures
were randomly split into two halves for training and testing.
Text Identification Our figure analysis approach needs access to all the text con-
tent within the figures (i.e., axis labels, legend labels, etc.,). Given the extensive
progress in the OCR community over the past several decades towards the local-
ization and recognition of text in images and documents, we leveraged state of
the art OCR engines (Microsoft OCR [41], Google OCR [42], Abby [43]) for text
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Fig. 5: Scholarly figures present a challenge to state of the art OCR: text localization
(top row) and recognition (bottom row) results using [41]. Common errors include (i)
missed localizations, e.g., rotated text (left-most, y-axis), numeric text (right-most -
‘2’, ‘4’), (ii) incorrect recognition, e.g., sub/superscripts (left-middle, y-axis), decimals
(right-middle - ‘2.2’ as ‘22’), and (iii) false positives, e.g., spurious boxes in plot area.

identification. Figure. 5 displays a few results of text localization and recognition
using Microsoft OCR [41] on our dataset. While text corresponding to legend
labels is often well localized, the text corresponding to axes labels is challenging
due to the prevalence of numeric, rotated, sub/superscript, and decimal char-
acters. Our overall accuracy for text recognition was 75.6% with an F1-score of
60.3% for text localization. To factor out the effect of OCR errors, we pursued
our experiments by using ground truth text-boxes. (See section. 7 for results
obtained when using text from OCR instead.)

For evaluating axis parsing performance, we independently measured the
accuracy of our axes position, axes label, and axes scale detection modules.
Axes position (i.e., the plot area extent) accuracy is measured by using the
standard bounding box overlap-criteria from object detection [40]. More specif-
ically, we regard a predicted bounding box Bp for the plot-area to be correct
if its intersection-over-union with the ground-truth box Bg is above 0.5, i.e.,
Bp∩Bg

Bp∪Bg
> 0.5. Under this metric, we obtained an accuracy of 99.2%. For measur-

ing axes label accuracy, we use the same box overlap criteria and obtained an
accuracy of 95.9%. Finally, for evaluating axes scale, we compute the difference
(in pixels) between the predicted and ground-truth axes scales, and regard a
prediction to be correct if the difference is below a threshold of 5%. Under this
metric, we achieved an accuracy of 91.6%.

For evaluating legend parsing performance, we independently measured the
accuracy of our legend label detection and symbol detection method using the
box overlap-criteria. Under this criteria, our approach obtained an accuracy of
72.6% for label detection and 72.7% for symbol detection.

For evaluating plot-data parsing performance, we used the standard F-measure
metric [44] with following statistical definitions: A point xi on the predicted path
Ps = {xi}ni=1 = {(xi, yi)}ni=1 is counted as true positive if the normalized differ-
ence with the ground-truth y′i is below a threshold, i.e, (yi− y′i) < th (th = 0.02
in our experiments). A predicted point is counted as false positive if there exists
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Fig. 6: Qualitative results (Left: original figure, Right: regenerated figure). Top row
shows three samples of perfect parses, where our approach understands and regenerates
challenging figures. Middle row shows three examples where our parser makes some
errors, such as when the input figure violates assumption of being a function, or merges
parts of the plots. Bottom row shows failures, such as when figures have multiple y-axis
(with superscripts), or have multi-line legends, or have dense plot-data crossings.

no ground-truth at that position, i.e., y′i = ∅∩yi 6= ∅. Similarly, a false negative
is recorded when y′i 6= ∅ ∩ yi = ∅. A predicted point is counted as both false
positive and false negative if the predicted value is outside the threshold. With
these definitions, we consider a predicted path to be correct if its F1 score is
above a threshold Th (95%). Under this conservative metric, our data-parsing
approach achieved an accuracy of 26.4%. Note that for a figure to be considered
correct all the lines must be parsed accurately. We also analyzed the importance
of the CNN-based similarity features within our path-finding model. Ignoring
these CNN features dropped our accuracy to 23.2%, confirming their utility.

While the above evaluations reveal the component-level performance, we also
evaluated our overall figure analysis performance. Our approach obtained an
overall accuracy of 17.3%. Note that several components need to be sequentially
accurate for the entire parsing to be considered correct. Figure 6 displays a few
qualitative results obtained using our analysis approach. Our approach does an
impressive job despite the high structural variations in the figure as well as the
presence of heavy deformations in the plotted data.

Evaluation parameters: To study the sensitivity of the chosen evaluation thresh-
olds within our model towards the final performance, we analyzed our results
sweeping over varying parameter settings. As displayed in figure 7, the perfor-
mance is stable across a range of settings.

6 Applications: Query Answering

While our proposed figure parsing approach enables a variety of exciting ap-
plications (see figure 1), here we describe a functioning prototype of a query-
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Fig. 7: Evaluation: Our results are robust to the chosen evaluation parameters.

answering system that allows powerful search and querying of complex figure
content across multiple papers. The input to our query-answering system is a
templated (textual or numerical) query that requests rich semantic details about
a specific dataset. For example, Best method on the LFW dataset?, Best precision
at 0.3 recall on BSDS dataset?, etc. The output is a textual response (numeri-
cal or string value) obtained by analyzing the parsed content of all figures that
match the requested dataset. We assume a simple query representation with a
structured template that has two parts: the dataset (e.g., ‘PASCAL VOC detec-
tion’, ‘UCI IRIS classification’, etc.,) and the metric (e.g., ‘precision vs. recall’,
‘accuracy vs. #dimensions’, etc.,).

Given a specific query, we first retrieve all relevant figures (across multiple
papers) from our corpus that match the requested dataset and metric by search-
ing the figure meta-data (captions). The retrieved figures are then processed
using our approach and the parsed content is then collected into a simple data-
table representation. Finally, the query is run through the collected data and the
requested quantity is extracted. We ran experiments on a collection of over 3,500
textual and numerical queries. The textual queries are formatted such that they
request the specific label (amongst those indicated by the legend labels) that is
the best (in terms of the y-axis values) either at specific points of the domain
(i.e., x-axis values) or the overall domain. Similarly, the numerical queries are
formatted such that they request the best y-axis value obtained at specific points
or overall domain (x-axis). (Please see supplementary for more details). Queries
were evaluated by comparing the predicted response to the ground-truth.

Table 2 summarizes the results obtained using our approach. Numerical
queries are judged correct if the returned value is within 2% of the correct value.
We compare our results to (i) a baseline method that naively picks a response
to a query without parsing the plotted data, i.e., by randomly picking one of
the classified legend labels; and (ii) a version of our approach that only uses the
color-feature representation. Our approach obtains impressive results, thereby

Approach Textual (top-1) Textual (top-5) Numerical

Baseline 25.3% 62.3% -
Color-only 38.7% 64.6% 32.3%
Ours 47.7% 72.6% 45.3%

Table 2: Quantitative results on complex query-answering. ‘Top-5’ indicates the results
obtained when the predicted answer is within the top 5 answers.
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Fig. 8: Qualitative results demonstrating the utility of our parsing approach towards
complex query-answering. Our approach is not only able to successfully parse challeng-
ing figures, but also answer interesting queries by summarizing results across multiple
papers. Queries in the top row collate plot-data from multiple papers – for e.g., in case
of LFW (top-left), our method combined results from 4 different papers: Cao ICCV’13,
Chen CVPR’13, Berg CVPR’13, and Chen ECCV’12 to answer the query.

reaffirming the potential value it unleashes. Figure 8 displays qualitative results
on some examples of queries possible using our answering system.

While we have presented the query-answering system as a proof-of-concept,
we highlight a few other exciting potential applications:
Figure captioning: In the pursuit of immediate dissemination of results, authors
often miss providing meaningful captions to their figures in papers [45, 46]. Our
proposed figure parsing approach can help towards automatic caption generation.
Our parsed structural representation can be used to not only create simple-
templated captions [47], but also help generate complex summaries [48, 49].
Accessibility: Developing interfaces that can provide simple and convenient ac-
cess to complex information has huge benefits across multiple domains [50, 51].
While authors often summarize interesting observations about their figure con-
tent in their paper text, the alignment between the figure elements and their
corresponding mentions in the body text is currently unavailable [52]. Our fig-
ure parsing approach can help towards bridging this gap, and thereby facilitates
the development of richer visualization interfaces [53, 54].
Plagiarism detection: Recent years have witnessed a surge in papers reproducing
hitherto published results [55]. Identifying such plagiarized articles is of utmost
concern to academic committees and publishers [56]. Our figure parser can help
towards their detection by analyzing and matching their result-figure contents.

7 Discussion

With scores of papers being published every year, it is imperative to devise pow-
erful academic search systems that can discover important papers and identify
influential citations, thereby alleviating researchers from the enormous informa-
tion overload. In this paper, we introduced FigureSeer, an end-to-end framework
for parsing figures within research papers that enables rich indexing and search
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Task Result using OCR-text Result using text-boxes

Axes position 79.4% 99.2%
Axes label 42.5% 95.9%
Axes scale 60.5% 91.6%
Legend label 41.6% 72.6%
Legend symbol 63.2% 72.7%
Plot-data parsing 21.4% 26.4%
Overall 7.2% 17.3%
QA (Ours) 19.2%, 33.7%, 17.8% 47.7%, 72.6%, 45.3%
QA (Baseline) 10.8%, 32.0%, - 25.3%, 62.3%, -

Table 3: Results obtained using OCR-based [41] text identification. (Query-answering
QA shows top-1, top-5, and numerical results.) Poor OCR performance hurts the dif-
ferent components of our framework.

of complex result content. We have presented a novel approach for result-figure
parsing that not only handles the problems with clutter and deformations of the
plotted data, but is also robust to the variations in the format and design of
figures. Our experimental analysis has confirmed that figure parsing in scholarly
big data is a challenging vision application. We hope our work will spur further
exciting research in this domain.

While our current framework is generalizable for parsing a variety of result-
figures, it has only scratched the surface with interesting open challenges ahead.
OCR is a critical component towards the success of our framework. State-of-
the-art and commercial OCR engines have limited success in case of scholarly
figures. Table 3 reports results obtained by our framework when using text from
OCR. Our preliminary attempts at post-processing the OCR results with deep
learning based reasoning only partially redressed these errors. Improving OCR
performance by addressing the challenges posed within scholarly figures is an
interesting and open future endeavor.

Our plot-data parser currently suffers from successfully parsing the plotted
data in presence of heavy clutter (see figure 6, bottom right). Techniques from
vascular tracking such as [57] could be applicable here. Our legend parser cur-
rently cannot handle labels spanning multiple lines. Our axes parser assumes the
axes scale are either linear or logarithmic, with their tick labels being limited
to numeric values. Finally, our figure analysis approach currently models and
trains the different components (axes, legend, and plot-data parser) indepen-
dently. Jointly modeling all the components and training them together within
an end-to-end deep network is an exciting endeavor.
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