Leveraging Term Banks for Answering Complex Questions:
A Case for Sparse Vectors

Peter D. Turney
Allen Institute for Artificial Intelligence

2157 N Northlake Way Suite 110, Seattle, WA 98103
peter.turney@gmail.com

Abstract

While open-domain question answering (QA)
systems have proven effective for answering
simple questions, they struggle with more
complex questions. Our goal is to answer
more complex questions reliably, without in-
curring a significant cost in knowledge re-
source construction to support the QA. One
readily available knowledge resource is a ferm
bank, enumerating the key concepts in a do-
main. We have developed an unsupervised
learning approach that leverages a term bank
to guide a QA system, by representing the
terminological knowledge with thousands of
specialized vector spaces. In experiments
with complex science questions, we show that
this approach significantly outperforms sev-
eral state-of-the-art QA systems, demonstrat-
ing that significant leverage can be gained
from continuous vector representations of do-
main terminology.

In our experiments, we made the surpris-
ing discovery that dense, low-dimensional em-
beddings (used in many Al systems) were
not the most effective representation, and that
sparse, high-dimensional vector spaces per-
formed better. We discuss the reasons for this,
and the implications this may have for other
projects that have assumed embeddings are the
best continuous representation.

1 Introduction

Open-domain question answering (QA) systems
typically use information retrieval (IR) techniques to
answer questions by searching in a large corpus of
natural language text (Strzalkowski and Harabagiu,

2006). They support relatively simple queries, such
as questions about facts involving named entities.
More complex queries are possible with restricted-
domain QA systems (Molld and Vicedo, 2007).
These systems generally use classical Al techniques,
such as rule-based systems with knowledge bases.

We aim to answer complex questions in a re-
stricted domain without the use of knowledge bases
or other expensive resources. Our chosen domain is
science at the levels of elementary school (3rd to 5th
grade) and middle school (6th to 8th grade). We use
multiple-choice science exam questions to evaluate
our QA system. Figure 1 shows an example of a
middle school exam question.

Which of the following statements best explains why

earthquakes occur more frequently in California

than in Massachusetts?

(A) The rock found in California is igneous, but the
rock found in Massachusetts is sedimentary.

(B) California is located on the boundary of two
crustal plates, but Massachusetts is not.

(C) The rock under California is soft, but the rock
under Massachusetts is hard.

(D) California is located on a continental plate, but
Massachusetts is not.

Figure 1: A middle school multiple-choice exam ques-
tion. The correct answer is (B).

Several recent papers address answering multiple-
choice science exam questions (Khot et al., 2015;
Clark et al., 2016; Jauhar et al., 2016; Khashabi et
al., 2016). Multiple-choice exams are an excellent
benchmark for QA systems, since the questions are
complex, yet performance is easily measured.

Our approach to restricted-domain QA is to as-
sume that the domain will have a specific vocabu-
lary, in the form of a term bank, which can guide
the QA system. The intuition is, for every ques-
tion, there is a key concept that links the question
to the best answer. If we can identify the term that
expresses the key concept, then we have an excellent
guide to finding the correct answer. This intuition is
related to lexical cohesion in discourse. Morris and
Hirst (1991) describe lexical cohesion as “the cohe-
sion that arises from semantic relationships between
words”, resulting from “chains of related words that
contribute to the continuity of lexical meaning.”

We use a term bank to find a cohesive link be-
tween a question and a candidate answer. For each
candidate answer, we search for the term that pro-
vides maximal lexical cohesion between the ques-
tion and the answer. The best candidate is the choice
with the highest lexical cohesion with the question.

Our QA system, Multivex, uses an unsupervised
method to build three types of vector spaces: termi-
nology space, word space, and sentence space. Ter-
minology space is designed for finding a term in the
term bank that links a question to a candidate answer
with strong lexical cohesion. Word space is designed
to characterize a word by the context in which the
word appears. Sentence space is designed to charac-
terize a sentence by the words that it contains.

There is only one terminology space, which con-
tains one vector for each term in the term bank.
There are thousands of word spaces and sentence
spaces, one for each term in the term bank. The vec-
tor representation of a word or a sentence is modu-
lated by the term bank. A word or sentence has no
global vector representation; it only has a represen-
tation with respect to a given term.

For example, consider Figure 1. Terminology
space tells us that the term earthquakes has a high
lexical cohesion with the question and answer (B).
The word space for earthquakes tells us that the
word plates often appears in the context crustal. The
sentence space for earthquakes tells us that the ques-
tion as a whole is similar to the kinds of sentences
that occur in the earthquakes sentence space. The
three spaces all agree that there is a high lexical co-
hesion between the question and answer (B).

In our prototypes of Multivex, at first we used
dense, low-dimensional embeddings for our vector

spaces, since embeddings have achieved impressive
results on a variety of tasks (Mikolov et al., 2013a).
We were surprised to later find that sparse, high-
dimensional vector spaces yielded better results.

The reason sparse vectors work well in our QA
system is that rare word co-occurrences provide the
strongest evidence for lexical cohesion. When a
term such as earthquakes links plates and crustal,
this is a rare event that signals an important con-
nection. The problem with dense, low-dimensional
embeddings is that they smooth away rare events.
Dense embeddings are good for capturing the gen-
eral usage of a word such as plates, but they ignore
specialized word senses, such as crustal plates.

We have two main results: (1) Leveraging term
banks is an inexpensive way to answer complex
questions. Term banks are a good source for the con-
cepts that make an answer lexically cohesive with a
question. (2) Sparse vectors capture lexical cohesion
better than dense vectors. Dense vectors are good for
capturing the general sense of a word, but facts lie at
the intersection of several word meanings; facts tend
to be rare and specific, which makes sparse vectors
more appropriate when seeking facts.

In the following section, we discuss related work
with science exam questions and past analysis of
sparsity versus density. Section 3 presents a de-
tailed description of Multivex. In Section 4, we
show that Multivex performs better on science exam
questions than a strong IR baseline. We compare
sparse vectors to Word2vec embeddings (Mikolov et
al., 2013b) and truncated singular value decomposi-
tion (SVD) embeddings (Turney and Pantel, 2010),
demonstrating that Multivex works best with sparse
vectors. Section 5 discusses the results of the ex-
periments. We consider limitations of Multivex in
Section 6 and we conclude in Section 7.

2 Related Work

The first TREC (Text REtrieval Conference) QA
task took place in 1999 (Voorhees, 1999). The
task was to answer fact-based, short-answer, open-
domain questions, mostly involving named entities,
by retrieving small snippets of text. We now have ro-
bust, well-tested IR techniques for answering these
kinds of questions and research is shifting to more
challenging problems.

In this section, we discuss related work with sci-
ence exam questions. Since embeddings are cur-
rently popular, our results with sparse vectors may
be surprising; therefore we also discuss past work
that compares sparse vectors to embedddings.

2.1 Multiple-Choice Science Exam Questions

Past work with science exam questions has used
structured information, in the form of if-then rules
or tables. This information tends to be unreliable if
it is acquired automatically or labor-intensive if it is
acquired manually. Multivex needs only a large cor-
pus of text and a term bank for the chosen domain.

Khot et al. (2015) compared three different types
of Markov Logic Networks (MLNs) for answer-
ing science exam questions. They used structured
knowledge in the form of if-then rules.

Clark et al. (2016) evaluated an ensemble of five
solvers: three of the five were corpus-based, but
the fourth used if-then rules and the fifth used ta-
bles. Their ablation study demonstrated that all five
solvers made a significant contribution.

Jauhar et al. (2016) represented science knowl-
edge in a tabular form, where rows stated facts and
columns imposed a parallel structure of types on the
rows. The best answer to a question was determined
by the row and column that best supported one of the
choices. They trained a supervised log-linear model
to score the choices.

Khashabi et al. (2016) applied ILP to knowledge
in a tabular form, using the same tables as Jauhar et
al. (2016). Their ILP system performed multi-step
inference by chaining together multiple rows from
separate tables.

2.2 Sparsity and Density

Dense embeddings achieve good results on many
tasks (Turney and Pantel, 2010). The classical ap-
proach to embeddings is to make a word—context co-
occurrence matrix and then apply a dimensionality
reduction algorithm (Landauer and Dumais, 1997).
A more recent approach is to learn embeddings with
a neural network (Mikolov et al., 2013a; Mikolov
et al., 2013b). Baroni et al. (2014) described the
classical approach as context-counting and the neu-
ral network approach as context-predicting. How-
ever, Levy et al. (2014b) argued the two approaches
are learning the same latent structure.

Many papers report that dense embeddings are
better than sparse vectors. For example, Landauer et
al. (1997) achieved 64.4% on the TOEFL synonym
test with embeddings from truncated SVD, but the
original sparse matrix only achieves 36.8%.

In a series of papers, Levy et al. (2014a; 2014b;
2015) compared sparse and dense vectors. In sum-
mary, they reported that “there is no single method
that consistently performs better than the rest” (Levy
et al., 2015) and a sparse representation “is supe-
rior in some of the more semantic tasks” (Levy and
Goldberg, 2014a). Toutanova et al. (2015) show that
a sparse “observed features” model is better than a
dense “latent feature” model for knowledge bases
and textual inference.

3 Multivex

The inputs to Multivex are a term bank, a corpus,
and a multiple-choice question. The output is the
answer to the question. Multivex uses three types
of spaces: terminology space, word space, and sen-
tence space. Each term in the term bank maps to
one row vector in the terminology matrix, one word
matrix in the set of word matrices, and one sentence
matrix in the set of sentence matrices. Table 1 sum-
marizes the spaces.

Let g be a question with m possible answers
A={ay,...,an}and let T = {t1,...,t,} be our
term bank with n terms. Multivex scores each QA
pair (g, a;) with respect to a science term t;. The
score score(q,a;|t;) is an average over eight sub-
scores, four based on terminology space, two based
on word space, and two based on sentence space.
The final score for the pair (g, a;) is the maximum
score over all t; € T'. The best guess for the correct
answer to ¢ is the answer a, with the highest score
overalla; € Aandallt; € T.

To construct these vector spaces for a given do-
main, we begin with a term bank for the domain
and a large corpus of text, such that most of the
terms in the term bank occur frequently in the cor-
pus. We then build a set of pseudo-documents, one
for each term, by taking the union of the sentences
in the corpus that contain the given term. From
the pseudo-documents, we build terminology space,
word space, and sentence space. These three types
of spaces are used to calculate score(q, a;|t;).

Matrices (Spaces) Rows (Entities)

Columns (Features)

1 terminology matrix 9,009 science terms
9,009 word matrices

9,009 sentence matrices

2,081 words on average per matrix
16,155 sentences on average per matrix

22,767,476 unigrams and conjunctions
millions of unigrams, bigrams, and trigrams
millions of unigrams, bigrams, and trigrams

Table 1: A summary of the three types of spaces.

3.1 Term Bank

In our case, the given domain is elementary and mid-
dle school science. The term bank consists of 9,356
terms from 52 science glossaries.! Most of the glos-
saries came from K-12 (kindergarten and 1st to 12th
grades) websites.

3.2 Corpus

The corpus consists of 280 GB of text (50 billion to-
kens) collected by a web crawler. All markup was
removed from the web pages and the text was split
into sentences with the Stanford CoreNLP sentence
segmenter.> We selected English text by requiring
all sentences to contain English stop words, using
the SMART stop word list (Salton, 1971).3 The re-
sult was 1.75 billion English sentences.

3.3 Pseudo-Documents

For each of the 9,356 science terms, we searched
in the corpus for sentences that contained the given
term. If there were fewer than ten sentences, we
dropped the term, leaving us with 9,009 science
terms. For each remaining term, we collected a
maximum of 50,000 sentences, which formed the
pseudo-document for the term.*

3.4 Terminology Space

Terminology space is designed to find the best link-
ing concept (the best science term) for a given QA
pair. Terminology space consists of a single ma-
trix with 9,009 rows, one row for each science
term. Each row is a sparse vector with 22,767,476
columns, where the columns are features derived
from the sentences in the pseudo-documents for the
science terms. Each sentence was converted into a
set of features, consisting of unigrams and conjunc-
tions of unigrams. Sentences were tokenized with

lhttp://allenai.org/data.html
thtp://stanfordnlp.github.io/CoreNLP/
3http://www.lextek.com/manuals/onix/
stopwords2.html
4http://allenai.org/data.html

the Stanford CoreNLP tokenizer and tokens were
stemmed and converted to lower case.

The motivation for the conjunction features is to
represent potential cohesive links. For example,
consider Figure 1. In the row vector for earthquakes,
the conjunction feature boundary & earthquake has
a high tf—idf (term frequency—inverse document fre-
quency) weight (Salton and Buckley, 1988), and it
links the word earthquakes in the question to the
word boundary in the correct answer (B).

For a given row in the terminology matrix (cor-
responding to a unique science term and a unique
pseudo-document), any unigram that occurred in ten
or more sentences and did not appear in the SMART
stop word list was selected as a feature for that row.
Any two distinct unigrams (excluding stop words)
that occurred together in the same sentence, in a
window of ten words, in ten or more sentences were
selected as a conjunction feature for that row. Con-
junction features were normalized by putting the
component unigrams in alphabetical order. Table 2
shows the top features for the term earthquakes.

Frequency Feature
49,944 earthquake
4,149 flood
4,064 earthquake & flood
3,709 volcano
3,604 earthquake & volcano
3,254 earth
3,117 occur
3,062 earthquake & occur
2,969 natural
2,936 disaster

Table 2: The top features for earthquakes.

We convert the raw frequency counts into tf—idf
values and binary values. Consider the conjunc-
tion feature earthquake & flood for the science term
earthquakes. Suppose earthquakes corresponds to
the i-th row in the terminology matrix and earth-
quake & flood corresponds to the j-th column. The

http://allenai.org/data.html
http://stanfordnlp.github.io/CoreNLP/
http://www.lextek.com/manuals/onix/stopwords2.html
http://www.lextek.com/manuals/onix/stopwords2.html
http://allenai.org/data.html

term frequency tf;; is the number of sentences in
the pseudo-document for earthquakes that contain
earthquake & flood; that is, tf;; = 4,064 (see Ta-
ble 2). The document frequency df; is the number of
pseudo-documents for which the feature is nonzero.
The tf—idf weight w;; for the feature earthquake &
flood in the science term earthquakes is defined as
follows:

logyo(tfi + 1)

0= S Logao (1 + 1) @

IDF; =1 - logyo(df; +1) @)
max; logq(df; + 1)

wij = TFZ']' . IDF]‘ (3)

The tf—idf weight w;; ranges between 0 and 1. The
binary weight is zero if the tf—idf weight is zero; oth-
erwise, it is one.

3.5 Word Space

Word space is designed to characterize how a word
behaves in the context of a given scientific term. For
example, the context that surrounds the word bound-
ary in sentences about earthquakes will be differ-
ent from the context around boundary in sentences
about solid state. The idea is to evaluate whether the
words in a QA pair are being used in the QA pair in
the same sense as they are used with the given scien-
tific term. That is, the contexts in the QA pair should
be similar to the contexts in the pseudo-document
for the scientific term. If they are not similar, then
the term is not a good match for the QA pair.

This can be viewed as a kind of word sense disam-
biguation. The vector representation of boundary is
modulated by the scientific terms earthquakes and
solid state. By choosing the term, we choose the
sense of boundary (Reisinger and Mooney, 2010).

There are 9,009 word space matrices, one for each
science term. The word matrix for a given science
term is generated from the corresponding pseudo-
document for the term. The rows in the word ma-
trix correspond to all of the unigrams (excluding
stop words) that occur ten or more times in the
pseudo-document. For example, the word matrix
for earthquakes has 5,385 rows, corresponding to
5,385 unique unigrams. The columns in the word
matrix are features derived from the contexts around
the words in the pseudo-document.

For a given row in a word matrix, the context for
the corresponding word (unigram) is defined as all
unigrams, bigrams, and trigrams that appear in a
window of three words to the left and three words to
the right of the given word, in all of the sentences in
the given pseudo-document. The term frequency #f;;
for a contextual n-gram feature is the number of to-
kens of the given word, such that the n-gram occurs
in the context of the token. The document frequency
df; is the number of words such that the n-gram ap-
pears in some context of the word. The weight w;;
is defined as in Equation 3.

3.6 Sentence Space

Sentence space is intended to model the typical sen-
tences that contain the given science term. The aim
is to treat the given QA pair as if it were a sen-
tence, and then compare it to the sentences in sen-
tence space. If the given scientific term is appropri-
ate for the given QA pair, then the QA pair should be
similar to sentences in the pseudo-document for the
scientific term. For instance, one of the sentences
in the pseudo-document for earthquakes is, “For ex-
ample, major earthquakes regularly occur along Cal-
ifornia’s San Andreas fault — a giant fracture in the
Earth that marks the boundary between the North
American and Pacific tectonic plates.” Compare this
sentence to the question in Figure 1. In this exam-
ple, the sentence covers the QA pair thoroughly, but
we do not assume that a single sentence will con-
tain all of the information that we need to answer a
question. Sentence space is used to calculate sub-
scores that combine information from several parts
of several sentences (see Section 3.7).

There are 9,009 sentence space matrices, one for
each science term. The sentence matrix for a given
science term is generated from the corresponding
pseudo-document for the term. The rows correspond
to all of the sentences in the pseudo-document. The
columns correspond to all of the unigrams, bigrams,
and trigrams in the pseudo-document. The sen-
tence matrix for earthquakes has 50,000 rows, cor-
responding to the 50,000 sentences that appear in the
pseudo-document for earthquakes.

For the sentence matrices, we found that binary
vectors worked better than tf—idf weighted vectors.
In other words, a sentence row vector is simply the
set of n-grams that appear in the sentence.

3.7 Scoring QA Pairs

The score, score(q, a;|t;), for a QA pair, (g, a;), is
the average of eight subscores that are calculated in
four steps, two subscores per step. All of the sub-
scores are designed to measure the lexical cohesion
between the question and the candidate answer.

The subscores are weighted inner products of vec-
tors. They all range from O to 1. To answer questions
quickly, we do not calculate all subscores for every
scientific term ¢; € T'. As we go through each step,
we only advance the best terms to the next step.

Step 1: terminology space with tf—idf weights: In
this step, we calculate two subscores using the ter-
minology matrix. We iterate over all 9,009 scientific
terms, searching for the top ten terms that maximize
the average of the first two subscores. The QA pair
must be converted into unigrams and conjunctions,
so that it can be compared to the row vectors in ter-
minology space. We first process the question and
the answer separately, generating unigrams and con-
junctions for each as if they were two separate sen-
tences. We then create further conjunction features
by pairing every unigram in the question g with ev-
ery unigram in the answer a;.

Step 1.1: f-idf weighted unigram match: Let
v, (t;) be the sparse tf—idf row vector in terminolgy
space that corresponds to the science term ¢, where
the features are only unigrams; all conjunction fea-
tures are dropped (ru for real-valued unigrams). Let
Viu (g, a;) be the sparse binary vector that represents
the QA pair, where the features are only unigrams
(bu for binary unigrams). We define the subscore
for Step 1.1 as follows:

Vru(tj) ' Vbu((L ai)
’Vbu((b ai)|1

score1 1(q, a;|t;) =)
Here |x|; is the L1 norm of the vector x and x - y is
the inner product of the vectors x and y.

Step 1.2: tf-idf weighted conjunction match: Let
vyc(t;) be the sparse tf—idf row vector in terminol-
ogy space that corresponds to the science term t;,
where the features are only conjunctions; all uni-
gram features are dropped (rc for real-valued con-
Junctions). Let vi.(q, a;) be the sparse binary vector
that represents the QA pair, where the features are
only conjunctions (bc for binary conjunctions). We
define the subscore for Step 1.2 as follows:

Vrc(tj) : Vbc(Q7 ai)
[Vie(g; ai)l1

score1 2(q, a;lt;) = 5)

Step 2: terminology space with binary weights:
In this step, we only iterate over the top ten sci-
ence terms that maximize the average of the two sub-
scores from Step 1. We use terminology space again,
but we convert the science term feature weights from
tf—idf to binary.

Step 2.1: binary unigram match: This is the same
as Step 1.1, except with binary term weights:

Vi (t5) - Vou (g, as)
’Vbu<q, a’i)|1

(6)

scorez 1(q, ai|t;) =

Step 2.2: binary conjunction match: This is the
same as Step 1.2, except with binary term weights:
Vie(t;) - Vie(q, a;)

[Vbe(q, ai) 1

scores 2(q, a;|t;) = 7

Step 3: word space with tf—idf weights: In this
step, we only iterate over the top four science terms
that maximize the average of the four subscores
from Steps 1 and 2. We use word space to calcu-
late two subscores. For each QA pair, we consider
four science terms, corresponding to four word ma-
trices. To compare the QA pair to a word matrix,
the pair must be converted into words and for each
QA word we need to find the corresponding context,
which is the set of unigrams, bigrams, and trigrams
that occur in a window of three words to the left and
three words to the right of the given word. We com-
pare the contexts in the QA pair to the contexts in
the word spaces.

Step 3.1: word context match with same word:
Let w be a word in the QA pair. This subscore mea-
sures the degree to which the context of w in the
QA pair is similar to the context of w in the word
space for t;, for an average w. Let v,,(w|t;) be the
sparse tf—idf context vector that represents w in the
word matrix for ¢; (rw for real-valued words) and let
Viw (Ww]q, a;) be the sparse binary context vector that
represents w in the QA pair (bw for binary words).
In both vectors, vy, (w|t;) and vy, (w|q,a;), the
features are unigrams, bigrams, and trigrams that
occur in a window around w. The score for w is
defined as follows:

er(w‘tj) : wa(w‘% ai)
‘wa(w‘% ai)|1

score,,(w|q, a;,tj) =

(®)

If w does not correspond to a row in the word matrix
for the term ¢;, then score,,(w|q, a;, t;) is zero. Let
W be the set of all words (unigrams excluding stop
words) in the QA pair. The subscore for Step 3.1 is
defined as the average of the word scores:

scores 1(q, a;|t;) = avg scorey,(w|q, a;,t;) (9)
weW

Step 3.2: word context match with different
words: This subscore measures the degree to which,
for the average word x in ¢ (or in a;), there is a
word y in a; (or in ¢) such that the context around
x in the QA pair is similar to the context around y in
the word matrix that corresponds to the science term
t;. Let x and y be words in the QA pair, such that
one of them is from ¢ and the other is from a;. For
each z, we want to find the word y that has the most
similar context with z; we are looking for context
that connects the question ¢ to the answer a;. Let
Viw(Z|q, a;) be the sparse binary context vector that
represents « and let v,.,(y|t;) be the sparse tf—idf
context vector that represents y in the word matrix
for t;. If x is in g, let Y be the set of words in a;;
otherwise, if « is in a;, let Y be the set of words in
q. The score for z is defined as follows:

scoregy(x|q, a;,tj) =
max VTw(y|t]) 'wa(l‘IQ7ai) (10)
yey |wa(x’% ai)|1

Let W be the set of all words in the QA pair. The
subscore is the average of the word scores:

scorez 2(q, a;|t;) = avg scoreyy(wl|q, ai, tj) (11)
weW
Step 4: sentence space with binary weights: In
this step, we only consider the first top science term
that maximizes the average of the six subscores from
Steps 1, 2, and 3. We use sentence space to cal-
culate two subscores. For each QA pair, we only
evaluate the one sentence matrix that corresponds to
the top science term. We treat the QA pair as if it
were a sentence and we compare it to the sentences
in the sentence matrix. To compare the QA pair to a
row vector in the sentence matrix, we extract all un-
igrams, bigrams, and trigrams from g and from a;.
Step 4.1: sentence whole match: Let s be a
sentence in the set of sentences S in the pseudo-
document that corresponds to the term ¢;. Let

Vis(5|t;) be the sparse binary row vector in the sen-
tence matrix for ¢; that corresponds to the sentence
s € S (bs for binary sentence). We also represent
the QA pair as if it were a sentence. Let v5(q, a;)
be a sparse binary vector in which the features are all
unigrams, bigrams, and trigrams from ¢ and from a;.
We score s € S by its similarity to the QA pair:

Vbs(5|tj) ’ Vbs(‘]a ai)
‘VbS(Q7 ai) ’1

scoregy (s|q, ai, t;) = (12)

Let S, be the top k sentences in S that have the high-
est similarity scores for the given QA pair (we set k
to five). The subscore is the average of the k scores:

scorey 1(q, a;|t;) = avsg scoresy(s|q, ai, tj) (13)
sSESE

Step 4.2: sentence subset match: For this sub-
score, we search for a subset of the words in the QA
pair such that the context around that subset has a
large overlap with a sentence in S for ¢;. Let U,, be
the set of all subsets of unigrams in the QA pair, up
to a maximum of m unigrams per subset (we set m
to six). For u € Uy, let c¢(u) be the union of the con-
texts for every unigram in w. Thus ¢(u) contains the
unigrams, bigrams, and trigrams from ¢ and from a;
that occur three words to the left and right of each
unigram in u. Let vs(c(u)|q, a;) be a sparse binary
vector of the n-grams in c(u). Let vy5(s|t;) be the
sparse binary row vector in the sentence matrix for
t; that corresponds to the sentence s € S. Let |u| be
the cardinality of the set u. We score the sentence s
by its maximum similarity to c(u):

scoress(s|q, ai, tj) =

[Vas (e(u)lg; ai)lx

max
’LLGUm

Let S}, be the top k sentences in .S that have the high-
est similarity scores for the given QA pair (we set k
to five). The subscore is the average of the k scores:

scorey 2(q, a;|t;) = avg scoress(s|q, a;, t;) (15)
SESE

The final score for the QA pair, (g, a;), is the av-
erage of the eight subscores above, given the top sci-
ence term ¢; selected by the four steps.

4 Experiments

In this section, we first test whether Multivex can
surpass an IR baseline system. We then replace
some of the sparse, high-dimensional vectors in
Multivex with dense, low-dimensional vectors, to
determine the effect of dimensionality and density.
We also measure how much each of the eight sub-
scores is contributing to the accuracy and how sen-
sitive Multivex is to parameter settings.

In the following experiments, we use multiple-
choice science exam questions at the elementary
school (3rd to 5th grade) and middle school (6th to
8th grade) levels.’ The questions have been divided
into train, development, and test subsets, summa-
rized in Table 3. We used the train and development
subsets while developing Multivex and we used the
test subsets for the experiments that follow.

Questions Train Dev Test Total
Public Elementary 432 84 339 855
Public Middle 293 65 282 640
Licensed Elementary 574 143 717 1434
Licensed Middle 1581 482 1631 3694
All Questions 2880 774 2969 6623

Table 3: Number of questions in each set.

4.1 Comparison with an IR Baseline

In their experiments with multiple-choice science
exam questions, Clark et al. (2016) show that a
QA system based on Lucene® is a strong approach
to question answering, out-performing several more
complex algorithms. Therefore our first experiment
compares Multivex with a Lucene-based approach.
Table 4 shows the accuracy of Lucene and Mul-
tivex on the test questions. The algorithms assign a
score to each of the four possible answer choices and
the choice with the highest score is selected as the
best guess. Accuracy is measured by the percentage
of correct choices. If n answer choices tie for the
correct score, the algorithm gets a partial mark of
1/n, the expected value of randomly resolving ties.
Both algorithms use the same corpus of 1.75 billion
English sentences, described in Section 3.2.
Multivex achieved higher scores than Lucene on
all test question sets. The difference between Multi-

5http://allenai.org/data.html
6https://lucene.apache.org/

vex (51.8%) and Lucene (49.1%) is statistically sig-
nificant, using Fisher’s Exact test with a significance
level of 95%. For comparison with past work, Jauhar
et al. (2016) achieve 54.9% on the Public Elemen-
tary questions, but this result is for the whole set of
855 questions, not the test set. Sachan et al. (2016)
achieve 46.7% on the whole Public Elementary set
(855 questions). Baudis et al. (2016) achieve 44.1%
on the Public Middle test set (282 questions).

4.2 SVD Embeddings

To compare sparse vectors with dense vectors, we
modify the first two subscores (Steps 1.1 and 1.2) to
use dense, low-dimensional SVD embeddings (Lan-
dauer and Dumais, 1997; Turney and Pantel, 2010).
We focus on these two subscores because Step 1
plays a key role in Multivex: searching through the
9,009 scientific terms to pick out the top ten. We
leave the other subscores as they are, to make it eas-
ier to interpret the results.

The embeddings are generated by SVDLIBC,’
which decomposes the terminology matrix into the
product of three matrices UXVT, where U and V
are column orthonormal and X is a diagonal ma-
trix of singular values (Golub and Van Loan, 1996).
The embedding space is given by the matrix Uy 3,
where Uy, is composed of the first £ columns of U
and Xy, is the first k£ singular values of 3. We use
the widely recommended setting £ = 300.

We evaluate two different ways to apply SVD to
terminology space. (1) We simply apply SVD to the
whole terminology matrix. (2) We separate the ter-
minology matrix into two matrices, one matrix with
all of the unigram features and another matrix with
all of the conjunction features. Step 1.1 uses the first
matrix and Step 1.2 uses the second.

Suppose that e(¢;) is the embedding in U3
that corresponds to the term ¢;. In order to com-
pare a QA pair to e(t;), we need to project the high-
dimensional vector v(q, a;) for the QA pair into the
same space as e(tj). We can do this by multiply-
ing v(q, a;) by Vy; that is, e(q,a;) = v(q,a;)Vg.
Since v(q, a;) is sparse, the multiplication is fast.

Table 4 shows that Multivex with sparse vec-
tors has higher accuracy than the two SVD varia-
tions. The difference between Multivex (51.8%) and

7https://tedlab.mit.edu/”dr/SVDLIBC/

http://allenai.org/data.html
https://lucene.apache.org/
https://tedlab.mit.edu/~dr/SVDLIBC/

Section Algorithm Public Public Licensed Licensed All Test Vector Delta
Elementary Middle Elementary Middle Questions Type
4.1 Multivex 59.7 60.6 51.1 49.0 51.8 sparse 0.0
4.1 Lucene 55.8 52.5 48.7 473 49.1 sparse —2.7
4.2 SVD 1 55.5 51.5 46.8 45.6 47.6 dense —4.3
4.2 SVD 2 56.2 51.8 48.3 46.9 48.8 dense —3.1
4.3 Word2vec 1 49.9 49.7 41.7 42.2 43.7 dense —8.2
4.3 Word2vec 2 51.9 52.6 453 44.8 46.5 dense —5.4

Table 4: Accuracy of various algorithms on the test question sets. Delta is the accuracy of an algorithm on all test

questions minus the accuracy of Multivex.

SVD (47.6% and 48.8%) is statistically significant.
Lucene also has a higher accuracy (49.1%) than the
two SVD variations, but the difference is not statis-
tically significant.

4.3 Word2vec Embeddings

As another comparison of sparse vectors with dense
vectors, this experiment evaluates Word2vec embed-
dings (Mikolov et al., 2013a; Mikolov et al., 2013b)
that are pre-trained with Google News.® As with
SVD, we apply embeddings to the first two sub-
scores (Steps 1.1 and 1.2) and leave the rest of Multi-
vex the same. The embeddings are 300-dimensional.

We evaluate two ways to replace the row vectors
in terminology space with Word2vec embeddings.
(1) Given a term such as earthquakes, we simply use
the Word2vec vector corresponding to earthquakes.
For multi-word terms, we add the Word2vec vectors
for each word in the term. (2) Given a term such as
earthquakes, we can use the corresponding pseudo-
document to make an embedding for earthquakes
by taking the sum of the Word2vec embeddings for
each unigram in the pseudo-document.

For the unigram match subscore of a QA pair
(Step 1.1), we use the average of the cosines be-
tween the term vector and each vector for unigrams
in the QA pair. For the conjunction match sub-
score (Step 1.2), we use the average of the geomet-
ric means of the cosines for each word in the con-
junctions. For example, if the term is earthquakes
and the QA pair has the conjunction flood & occur,
then we use the geometric mean of cos(earthquakes,
flood) and cos(earthquakes, occur).

Table 4 shows that Multivex with sparse vectors
has higher accuracy than the two Word2vec varia-

8https://drive.google.com/file/d/
0B7XkCwpI5KDYNINUTT1SS21pOmM/

tions. The difference between Multivex (51.8%) and
Word2vec (43.7% and 46.5%) is statistically signif-
icant. The difference between Lucene (49.1%) and
Word2vec is also statistically significant.

4.4 Ablating Subscores

Table 5 shows the results of ablating each of the
eight subscores in Multivex. All of the subscores
make some contribution to the accuracy, except
for the two unigram subscores (Steps 1.1 and 2.1).
These subscores appeared to be useful in the train-
ing and development sets, but they are not useful for
the test set.

Step Ablated Subscore Delta
1.1 tf-idf weighted unigram match +0.2
1.2 tf-idf weighted conjunction match ~ —2.1
2.1 binary unigram match +0.2
2.2 binary conjunction match -1.9
3.1 context match with same word —0.6
3.2 context match with different words —0.8
4.1 sentence whole match -1.3
4.2 sentence subset match —0.5

Table 5: Ablating subscores in Multivex. Delta is the
accuracy of the ablated Multivex minus the accuracy of
the complete Multivex. The results are based on the union
of all test questions.

The table suggests that the two conjunction sub-
scores (Steps 1.2 and 2.2) play a key role in Mul-
tivex, based on their deltas. Consider the exam-
ple in Section 3.4 of the conjunction feature bound-
ary & earthquake. 1If this feature has a high tf—idf
weight, there must be many sentences in the pseudo-
document for earthquakes that contain both bound-
ary and earthquake. This means that there is strong
lexical cohesion between the question and answer
(B) in Figure 1, given the term earthquakes.

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/

4.5 Varying Parameters

In Section 3.7, we described how Multivex searches
through the 9,009 scientific terms. Step 1 selects the
top ten terms, using the first two subscores. Step 2
reduces the ten down to four. Step 3 picks out the
single best term, which is the final output in Step 4.

These parameter values were tuned on the training
sets, with the goal of balancing accuracy and speed.
Table 6 explores some alternative values for the pa-
rameters, showing the results on the test set. The
default settings, given in Section 3.7, correspond to
the second row in the body of the table.

Number of Top Terms All Test Qs

Stepl Step2 Step3 Step4 Score Time
5 2 1 1 51.1 2.8
10 4 1 1 51.8 5.0
20 8 2 1 51.9 10.4
40 16 4 1 519 209

Table 6: Varying parameters in Multivex. The results are
based on the union of all test questions. Time is given in
seconds per question.

The parameter values have little impact on the ac-
curacy (which is a good thing), but they have a big
impact on the execution time (as expected). Answer-
ing a single question involves four passes through
the steps in Section 3.7, one pass for each of the
four candidate answers. With the default parameter
settings, Multivex can answer a typical four-choice
question in five seconds, running on a standard desk-
top computer (iMac Intel Core i7).

5 Trouble with Embeddings

A problem with embeddings is that rare events tend
to be smoothed away. This hypothesis is supported
by the results in the experiments with SVD and
Word2vec (Sections 4.2 and 4.3).

Table 5 shows the value of conjunction features
(Steps 1.2 and 2.2). The tf—idf weighted conjunc-
tion match is the most important subscore. Of
the 22,767,476 columns in the terminology matrix,
22,505,565 are conjunctions (98.8%). The pseudo-
document frequency (df; in Section 3.4) of conjunc-
tion features ranges from 1 to 4,292, with a median
of 1. Conjunction features have a very long tail of
rare events. Rare conjunction events convey valu-
able information for answering science questions.

6 Future Work and Limitations

Our focus in this paper has been multiple-choice
questions, but it should be feasible to extend Mul-
tivex to direct-answer questions. For example, the
sentence matrices could be used to generate a set of
candidate direct answers (see Section 3.6).

Multivex is unsupervised; we expect that a su-
pervised approach would yield higher test scores.
One possibility is to use a supervised deep learning
approach with an attention model to focus on rare
events (Li et al., 2016; Zhao et al., 2017).

Another limitation is that the features in Multivex
are simple unigrams, bigrams, trigrams, and con-
junctions of unigrams. More complex features, such
as part-of-speech tags and semantic relations, could
supplement these basic features.

The success of our term bank suggests that we
should look for other inexpensive resources that can
guide QA systems. Most of the glossaries that we
merged to create our science term bank also con-
tained definitions for the terms, but we did not use
the definitions. A natural improvement to Multivex
would be to exploit the definitions.

7 Conclusion

Multivex is a restricted-domain QA system, in that
it requires a domain-specific term bank, but this is
a relatively light-weight requirement, compared to
QA systems that require if-then rules or tables. The
key insight is that, with a term bank and some vec-
tors, we can use lexical cohesion to guide us to the
correct answer.

Multivex is different from much recent work in
that it uses sparse, high-dimensional vectors instead
of dense, low-dimensional embeddings. The intu-
ition is that word meanings are distributional and
general, but facts are intersections of word mean-
ings; facts tend to be rare and specific. The exper-
imental results in Sections 4.2 and 4.3 lend support
to these intuitions. Replacing sparse vectors with
dense embeddings reduces the test scores.

As QA systems mature, the emphasis in research
will shift from word meanings to sentence mean-
ings. Our experience with Multivex suggests that
this will require a corresponding shift from dense
embeddings to sparse vectors. Words are repeated
but most sentences are unique.

References

Marco Baroni, Georgiana Dinu, and German Kruszewski.
2014. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of ACL, pages 238-247.

Petr Baudis, Silvestr Stanko, and Jan Sedivy. 2016. Joint
learning of sentence embeddings for relevance and en-
tailment. arXiv preprint arXiv:1605.04655.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Turney, and Daniel
Khashabi. 2016. Combining retrieval, statistics, and
inference to answer elementary science questions. In
Thirtieth AAAI Conference on Artificial Intelligence,
pages 2580-2586, Arizona, USA. AAAL

Gene Golub and Charles Van Loan. 1996. Matrix Com-
putations. JHU Press, 3rd edition.

Sujay Kumar Jauhar, Peter Turney, and Eduard Hovy.
2016. Tables as semi-structured knowledge for ques-
tion answering. In ACL, pages 474—483.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Peter
Clark, Oren Etzioni, and Dan Roth. 2016. Ques-
tion answering via integer programming over semi-
structured knowledge. In IJCAI, pages 1145-1152.

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff,
Ashish Sabharwal, Peter Clark, and Oren Etzioni.
2015. Exploring Markov logic networks for ques-
tion answering. In Proceedings of EMNLP, volume 5,
pages 685-694.

Thomas Landauer and Susan Dumais. 1997. A solu-
tion to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2):211-240.

Omer Levy and Yoav Goldberg. 2014a. Linguistic regu-
larities in sparse and explicit word representations. In
CoNLL, pages 171-180.

Omer Levy and Yoav Goldberg. 2014b. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177-2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 3:211-225.

Huayu Li, Martin Rengiang Min, Yong Ge, and Asim
Kadav. 2016. A context-aware attention network
for interactive question answering. arXiv preprint
arXiv:1612.07411.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in Neural Information Processing
Systems, pages 3111-3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In HLT-NAACL, volume 13,
pages 746-751.

Diego Moll4 and José Luis Vicedo. 2007. Question an-
swering in restricted domains: An overview. Compu-
tational Linguistics, 33(1):41-61.

Jane Morris and Graeme Hirst. 1991. Lexical cohe-
sion computed by thesaural relations as an indicator
of the structure of text. Computational Linguistics,
17(1):21-48.

Joseph Reisinger and Raymond Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 109—
117. Association for Computational Linguistics.

Mrinmaya Sachan and Eric Xing. 2016. Easy questions
first? A case study on curriculum learning for question
answering. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics, pages
453-463.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation Processing & Management, 24(5):513-523.

Gerard Salton. 1971. The SMART Retrieval Sys-
tem: Experiments in Automatic Document Processing.
Prentice-Hall, Inc.

Tomek Strzalkowski and Sanda Harabagiu. 2006. Ad-
vances in Open Domain Question Answering, vol-
ume 32. Springer.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text in-
ference. In Proceedings of the 3rd Workshop on Con-
tinuous Vector Space Models and their Composition-
ality, pages 57-66.

Peter Turney and Patrick Pantel. 2010. From frequency
to meaning: Vector space models of semantics. Jour-
nal of Artificial Intelligence Research, 37(1):141-188.

Ellen Voorhees. 1999. The TREC-8 question answering
track report. In TREC, pages 77-82.

Kai Zhao, Liang Huang, and Mingbo Ma. 2017. Textual
entailment with structured attentions and composition.
arXiv preprint arXiv:1701.01126.

	Introduction
	Related Work
	Multiple-Choice Science Exam Questions
	Sparsity and Density

	Multivex
	Term Bank
	Corpus
	Pseudo-Documents
	Terminology Space
	Word Space
	Sentence Space
	Scoring QA Pairs

	Experiments
	Comparison with an IR Baseline
	SVD Embeddings
	Word2vec Embeddings
	Ablating Subscores
	Varying Parameters

	Trouble with Embeddings
	Future Work and Limitations
	Conclusion

