Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

Tudor Achim
Stanford University, 353 Serra Mall, Stanford, CA 94305

Ashish Sabharwal

TACHIM @ CS.STANFORD.EDU

ASHISHS @ ALLENAI.ORG

Allen Institute for Artificial Intelligence, 2157 N Northlake Way, Seattle, WA 98103

Stefano Ermon
Stanford University, 353 Serra Mall, Stanford, CA 94305

Abstract

Random projections have played an important
role in scaling up machine learning and data min-
ing algorithms. Recently they have also been ap-
plied to probabilistic inference to estimate prop-
erties of high-dimensional distributions; how-
ever, they all rely on the same class of projections
based on universal hashing. We provide a general
framework to analyze random projections which
relates their statistical properties to their Fourier
spectrum, which is a well-studied area of theoret-
ical computer science. Using this framework we
introduce two new classes of hash functions for
probabilistic inference and model counting that
show promising performance on synthetic and
real-world benchmarks.

1 Introduction

Probabilistic inference is a fundamental task in machine
learning and Bayesian statistics (Koller & Friedman, 2009).
Inference problems like computing expectations and nor-
malization constants of probabilistic models involve the
computation of high-dimensional integrals, which are gen-
erally intractable to compute exactly. Instead, these in-
tegrals are approximated using two main classes of al-
gorithms: sampling methods like Markov Chain Monte
Carlo (Jerrum & Sinclair, 1997), which explore the in-
tractable distribution using local moves, and variational in-
ference (Wainwright & Jordan, 2008; Jordan et al., 1999),
which uses tractable probability distributions to approxi-
mate the original, complex distribution. These approaches
are widely used in practice, but rarely provide general for-

Proceedings of the 337% International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

ERMON @ CS.STANFORD.EDU

mal guarantees about the quality of their approximations.

More recently, a new class of approximate inference
algorithms has been introduced (Gomes et al., 2006a;
2007; 2006b; Chakraborty et al., 2013a;b; Ermon et al.,
2014; Ivrii et al., 2015; Achlioptas & Jiang, 2015; Belle
et al., 2015; Zhao et al., 2016; Asteris & Dimakis, 2016;
Hsu et al.,, 2016) based on projecting complex, high-
dimensional distributions into lower dimensional spaces
where their properties are easier to analyze. For the ap-
proach to work, the random projection needs to satisfy two
properties. First, it has to “preserve” the key properties of
the original distribution, at least probabilistically. Second,
the resulting lower-dimensional distribution should be eas-
ier to analyze. Currently, all these algorithms are based on
hash functions implemented using random (low-density)
parity check codes (Zhao et al., 2016; Asteris & Dimakis,
2016). These hash functions have excellent statistical prop-
erties, in the sense that to a large extent the projection pre-
serves the properties of the original distribution with high
probability. Parity-based projections, however, are highly
oscillatory and have a non-convex nature, leading to prob-
ability distributions that although lower-dimensional, can
still be difficult to analyze.

A natural question is whether there exists other classes of
hash functions that can be employed for approximate infer-
ence. A wide variety of random projections are known for
traditional machine learning applications, and their prop-
erties are well understood (Achlioptas et al., 2002; Blum,
2005; Rajaraman & Ullman, 2011). However, current anal-
yses in the context of statistical inference are ad-hoc and
rely on specific properties of parity constraints, and are thus
unsuitable for studying new candidate hash functions.

In this paper we address this theoretical gap by show-
ing a connection between the Fourier spectra of arbitrary
(discrete) functions and the statistical properties of their
corresponding hash families. Because the Fourier spec-

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

tra of many Boolean functions are well studied in theoret-
ical computer science, learning theory and computational
social choice (ODonnell, 2003), this theoretical bridge al-
lows us to quickly make predictions about the statisti-
cal performance of a wide class of functions besides par-
ity constraints. Using this bridge, we introduce two new
hash functions for use in probabilistic inference and model
counting algorithms (Ermon et al., 2013c; Chakraborty
et al., 2013b; Gomes et al., 2006a; 2007) and show empir-
ically that these functions perform very well on real-world
and synthetic examples.

2 Preliminaries

2.1 Inference by Hashing

There are many recent algorithms that rely on universal
hash functions for approximate inference, including WISH
(Ermon et al., 2013c), ApproxMC (Chakraborty et al.,
2013b), XORSample (Gomes et al., 2006a), and randomly-
projected variational inference (Hsu et al., 2016). These
methods all build on the original probabilistic reduction be-
tween #P and NP developed by Valiant & Vazirani (1986),
Stockmeyer (1985), and Sipser (1983).

These methods aim to solve the problem of discrete inte-
gration; namely, estimating) |, w(x) where w is a non-
negative weight function and X = {0, 1}" is a high dimen-
sional set, e.g., corresponding to all possible assignments
to n binary variables. If w(z) represents the unnormalized
mass of a probability distribution, then the sum is the par-
tition function of that distribution. Non-binary graphical
models can be represented in this framework by introduc-
ing additional variables and factors corresponding to the
binary encoding of the state of each variable. If w(x) is a
binary-valued function indicating whether or not the vari-
able configuration x satisfies some constraints, then esti-
mating the sum corresponds to the model counting prob-
lem (Chakraborty et al., 2013b).

The key idea behind hashing approaches for discrete inte-
gration is to sidestep the exponentially large sums by ana-
lyzing the properties of X when projected randomly onto
lower-dimensional spaces and using these low-dimensional
projections to approximate the original sum. The functions
we select randomly for the projections come from univer-
sal hash families, which we review briefly below (Vadhan,
2011; Goldreich, 2011):

Definition 1. A set of functions H = {h : {0,1}" —
{0,1}™} is e-SU (Strongly Universal) if, when h is cho-
sen uniformly at random from H, the following conditions
hold: (i) for all x € {0,1}", h(x) is distributed uniformly
in {0,1}™ and (ii) for all ©1 # x2 € {0,1}" and y1,y2 €
{0,1}™ we have that P[h(x1) = y1, h(z2) = y2] < €/2™.

The family of fully-independent hash functions, which act

independently on any input point in S, is 1/2™-strongly
universal, but requires m2™ bits to specify. Pairwise inde-
pendent hash functions where h(z1) is independent from
h(xz2) for any (z1,x2) pair, can be specified more com-
pactly, requiring only O(nm) bits, and are also 1/2™-
strongly universal. They are based on parity constraints
and are of the form h4 ,(z) = Az + b mod 2 where A
and b are selected uniformly at random from {0,1}™*"
and {0, 1}™*! respectively.

Returning to our original goal of estimating > w(x),
we rely on the key idea that the sum can be estimated by
splitting X" using h drawn from a universal hash family H
and considering the properties of a random cell A~ (y)NX.
For example, suppose w(x) is an indicator function for a set
S, e.g., defined as a set of constraints as in a model counting
application. A randomized algorithm 4 for estimating the
size of aset S C {0, 1}"™ with high probability is to draw T'
hash functions A1, - , by, from universal hash fami-
lies H™ = {h : {0,1}™ — {0,1}"} for increasing m and
returning 2™~ ! as soon as the intersection hy. ,ln(yt,m) ns
is empty for more than half of the 7" trials. The reason this
algorithm works is that by uniformity (property 1 in Def-
inition 1), in expectation the cell A, b (Ye.m) N S contains
|S]/2™ elements (the expectation is over the choice of hash
functions). Furthermore, by the second property in Defini-
tion 1, the variance of the number of elements of S that
show up in a cell h=1(y) is controlled, which guarantees
concentration about the mean over the 7 trials.

When designing new hash families for approximate infer-
ence, then, our goal is to bound the probability that the r.v.

X(h,S,y) =" (y) NS (1)

deviates from its mean, u(h, S, y), when h is drawn from
the family X = {h : {0,1}" — {0,1}™} and y is any
vector in {0, 1}". When H is universal we note that y =
|S]/2™. To be useful for hashing-based approaches for ap-
proximate counting X needs to concentrate about its mean;
in particular, we say that H is weakly (k, &)-concentrated
if Pr[X > p 4 Vk|] < 1/ and Pr[X < p— Vk] < 1/6.
Ermon et al. (2014) showed that the randomized algorithm
above, using 7' > 8In(8n) trials, computes |S| within a
factor of 4 with probability at least 3/4 when X is weakly
(u?,4)-concentrated.

It can be seen from standard concentration inequalities that
if h is chosen from a family of 1/2™-SU hash functions,
then X will be weakly (u?,4)-concentrated. Interestingly,
Ermon et al. (2014) showed that this condition can be re-
laxed to the notion of average universality:

Definition 2. We say that a hash family H = {h
{0,1}™ — {0,1}™} is (¢, q)-AU (Average Universal) if the
following two conditions hold when h is chosen uniformly
at random from H.:

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

1. Uniformity: for all x € {0,1}", h(x) is distributed
uniformly in {0, 1}™.

2. Average universality: for all S C {0,1}" with
Q = qand y1,y2 € {0,1}™, 320, 2peq Plh(z1) =

T1F#T2

Y1, h(x2) = ya] < q(g — 1)e/2™.

Proposition 1 ((¢, ¢)-AU and Concentration). If H is an
(e,q)-AU hash family, then when |S| = q and h is drawn
from H, X (h,S,y) is weakly (u?,8) concentrated if e <
(u/(6 = 1)+ p—1)/(S| = 1). As a corollary, if e <
ﬁ then the randomized algorithm A for estimating
the size of a set S will output |S| within a factor of 4 with
probability at least 3/4 using T > 81n(8n) trials.

Importantly, it was shown that average universal hash fam-
ilies can be implemented using low-density parity check
codes (Ermon et al., 2014; Zhao et al., 2016; Asteris &
Dimakis, 2016). The significance of this result is that it
shows the existence of other hash function families that can
be used for approximate inference besides the traditional
pairwise independent ones. These alternative hash fam-
ilies (equivalently, random projections) have major prac-
tical advantages. Intuitively, they are random enough to
preserve the properties of the original set X’ being hashed.
However, their behavior is more predictable so that the pro-
jected model is easier to analyze. The practical gains can
be huge (Ivrii et al., 2015; Achlioptas & Jiang, 2015; Zhao
etal., 2016).

A natural question is whether there exists other classes
of hash functions with good statistical properties. In par-
ticular, our goal is to design new hash families that are
more tractable to optimize over than parity functions, but
retain useful statistical properties. The chief difficulty in
analyzing new families is that the quantity Pr[h(z;) =
y1, h(x2) = yo|, used to bound ¢, depends on both the un-
derlying hash function and on the “shape” or geometry of
the set) in part 2 of Definition 2. We address this via
a hash family construction for arbitrary boolean function
“templates” that lets bound the joint probability in terms of
the Fourier spectrum of the underlying template.

2.2 Fourier Spectra of Boolean Functions

We review the basics of Fourier analysis of boolean func-
tions. For ease of notation we will consider boolean func-
tions defined as f : {—1,1}" — {—1,1} with —1 repre-
senting true.

Consider an inner product over boolean functions:

Y. fla)g(z)

ze{—1,1}n

(f.9) =E[fg] =27"

Next we define the functions yg(z) to be the parity func-
tion xs(z) = [[,cg s, for all subsets S C [n]. Since

Elxs] = 0for S # Qand S # S = E[xsxs] = 0,
(Xs)sc[n) is an orthonormal basis for the space of func-
tions f : {—1,1}" — {—1, 1}. Formally, we have the rep-
resentation f = > g, f(S)xs, where f(S) = (xs, f)-
Since (f, f) = 1 for any f, by Parseval’s identitiy we have
Y scn £(8)? = 1 (ODonnell, 2003).

The Fourier spectrum of a function f, namely the weights
corresponding to different parity basis functions, is very
closely related to its noise sensitivity (ODonnell, 2003):
Definition 3. The noise sensitivity of f : {—1,1}" —
{—=1,1}, NS (f), is the probability that f(x) # f(y) when
x is drawn uniformly from {—1,1}" and y from N(z),
where N¢(x) is the distribution obtained by flipping each
bit of x independently with probability €.

The noise sensitivity of a function is intimately connected
with its Fourier spectrum:

P DRSO e

5C[n]

DN | =

NSe(f) =

For proofs and more background, see ODonnell (2003).

Intuitively, the noise sensitivity at small e tells us how cor-
related the value of f is across pairs of points that are
close in Hamming distance, i.e., how much f “mixes”.
From eq. (2), we can see that NS, increases with e for
€ €[0,1/2], and NS; /5(f) = 1/2 for any f.

Furthermore, by inspection of equation (2), the more con-
centrated the Fourier spectrum is on large sets S (recall
Parseval’s identity), the more noise sensitive f is. As a
corollary, we can see immediately that for any e the parity
function over k variables, XOR, is the most noise sensi-
tive function over k variables and that

1 1
NS (XORy) = = — =(1 — 2¢)*
2 2
This follows from equation (2) noting that the spectrum of

XORy; has a single non-zero coefficient.

Intuitively, the noise sensitivity of a function f determines
how well f splits up points on average across {—1,1}",
where the randomness is over the points in the space. Our
goal is to find families of hash functions that split up all
sets of points .S, where the randomness is over the choice of
functions in the family (see Definition 1). One might hope
that the Fourier spectrum of f can be related closely to the
variance properties of hash families based on f; indeed, in
the next section we show that this is the case.

3 Hashing with Noise Sensitive Functions

We begin by defining a notion of templated hash families.
For simplicity, we first consider functions with a fixed input
size (i.e., those with a fixed sized support). Our results,

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

however, easily generalize to variable-length hash families,
such as the short XORs used by Ermon et al. (2014), as
discussed in Section 3.1.

Let [n] and [—n] denote {1,...,n} and {-1,...,—n},
resp. o : [n] — [n] U[—n] is a signed permutation if
(lo(1)],...,]o(n)]) is a permutation of [n]. With some
abuse of notation, for boolean variables {z1,...,z,}, we
use —x; to denote the logical negation of z; and o(x;) to
denote the possibly negated variable that x; is mapped to:

sign(o (i))$\a(¢)|

Definition 4 (Templated Hash Family). Ler f : {0,1}" —
{0,1} be a boolean function over n variables. Let O be
the set of all signed permutations of [n]; =nl2" A
templated hash family Hy = {h : {0,1}" — {0,1}} isa
family of hash functions defined as:

Hy={f(o(z1),0(x2),...,0(zn)) | 0 € O}

Specifying a function in H ; requires a number of random
bits that is linear in n. Also, if f has a support of size k, i.e.,
it mentions only k of the n variables, then H ¢ effectively
has (n — k)! 2"~* copies of each function. Our results ap-
ply also to the subset of H with only the (})k!2* distinct
functions.

Hashing into {0,1}™ can be done by choosing m hash
functions independently from H ;. Hence, w.l.o.g., we fo-
cus our analysis to the case of m = 1. Because we want
to control the variance of) _o1{h(z) = 1} for arbi-
trary sets .S, our goal is to bound 3, o Prlh(z1) =
1, h(z2) = 1] when h is drawn uniformly at random from
‘Hy (cf. Definition 2). We start by observing that this is
bounded above by >°, . s Prlh(z1) = h(zz)]. If all
hash functions A € Hy are balanced, that is Pr[h(z) =
1] = 1/2 when z is chosen uniformly at random, then
Pr{h(a1) = 1, h(wz) = 1] = (1 — Prlh(a1) # hw2)])/2
when £ is selected uniformly at random from H . To start
analyzing this sum we introduce a slight variant of NS, re-
ferred to as NS/ (f), which measures the noise sensitivity
of f at fixed distance w. We use the notation N, () for the
set of all configurations obtained by flipping exactly w bits
of z,i.e., Ny(z) ={y | du(z,y) = w}.

Definition 5 (Fixed-Distance Noise Sensitivity). The
fixed-distance noise sensitivity NS, (f) is the probability
that f(z) # f(y) when x is drawn uniformly from {0, 1}"™
and y uniformly from N, (x).

The following relates the noise sensitivity of a function f
with that of all functions in H¢.

Proposition 2. Foranyh € Hy,0 <w < n,ande <1/2,
we have NS! (h) = NS! (f) and NS.(h) = NS.(f).

755%) = f(O'(fEl), e 70(55

NS = gy 2 A #)

T yENy ()

)
—rm e > e

T yENy ()

Proof. Let h(xq,--- n))- Then

flo(y))}

Since o bijects {0,1}" to {0,1}" and dy(x,y) =
dy(o(x),0(y)) since o is a signed permutation, the sum
is symmetric about ¢ and is equal to

iy 2 2. W@

w T yENy ()

F (W)} = NS, (f)

Thus NS/ (k) = NS, (f). Since NS.(f) = >, (I)e*(1-
€)"~FNS! (f), the result for NS, follows. O

It turns out that Pr[h(x1) = h(x2)] can be expressed very
naturally in terms of NS/ (f) when dg (21, 22) = w and h
is drawn from . Note, however, the subtlety in the un-
derlying probability spaces: Pr[h(x1) = h(x2)] is a prob-
ability over choices of h, whereas NS/ (f) refers to a fixed
function f but considers randomness over which w bits of a
randomly chosen x are flipped. We show next that one can
reconcile this difference in underlying probability spaces
using a symmetry argument:

Lemma 1 (Noise Sensitivity vs. Clash Probability). Let
H ¢ be a templated family of hash functions. Then the clash
probability Py, [h(x) = h(y)] when dy(x,y) = wis
closely related to the noise sensitivity of f:

1—=NS,,(f) = Pr [h(x) = h(y)] 3)

h~Hy

Proof. The proof relies on the symmetry of the hash family
construction. If A is drawn from H ¢, then

1-NS, (h)= Pr [Wz)=h(y)]

2'~{0,1}"

y/NN (z")

“rme X) =)
U) ' Yy ENy(

—rme > 1{f(rv’):f(y’)}

z’ y' €Ny (z')

where the last line uses the fact that summing over ' and
y’ negates the effect of the signed permutation that defines
h. Furthermore, for any x’,y’ with dg(2',y') = w, there
are w!(n—w)! signed permutations o that map x, y to ', ¢/
(recall dy (z,y) = w). These are obtained by choosing all
permutations that yield the desired positions of the flipped
bits and fixing the sign change to map z to /. Thus we can

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

rewrite the sum over 2’ and y’ to be over all possible signed
permutations o

Hf(o(z)) = flo(y)}
27(") ZU: w!(n —w)!

= i S (o) =

=, Pr, [h(a) = h(y)]

as desired. O

Using this connection between clash probability and noise
sensitivity, we can generalize Theorem 3 of Ermon et al.
(2014) from short XORs to any boolean function:

Theorem 1. Ler f : {0,1}" — {0,1} be any Boolean
function, and Hy be the corresponding templated hash
family. Let 0 < q < 2" 71 be a permutation of
[n] such that NS’ ;) (f) is non-increasing with j, w* =

max {w | Z;”Zl (TE'J)) <q-— 1}, and

(S (o) 0o

6(”7 m7 q7 f)

+ (q 1 i (T(T;J) (NSTWH)(f))m)

w=1

Then the family formed by the conjunction of m indepen-
dent draws from Hy is a (e(n,m, q, f), q)-AU hash family.

In particular, if f is such that NS/, (f) is a non-increasing
function of k, we can set 7 to the identity permutation
and recover the same form as Theorem 3 of Ermon et al.
(2014). For general f, one can instead use tools from
the theory of noise sensitivity to compute—numerically or
analytically—the value of NS! (f) for various k and use
that to determine the ordering 7.

The significance of Theorem 1 is that it provides a general
framework to predict the statistical properties of a family
of hash functions H; constructed using a “template”. The
theorem does not pose any restriction on the function f.
The noise sensitivity is known for a large class of func-
tions (ODonnell, 2003), and those results can be readily
applied in our context. Furthermore, it is possible to eval-
vate in closed form the noise sensitivity of functions ob-
tained by composing other simpler functions. Similarly,
the Fourier spectrum is known for many common func-
tions; given the relationship between noise sensitivity and
Fourier spectrum, this information can also be used to pre-
dict the performance of the corresponding hash functions.
More broadly, Theorem 1 provides useful guidance towards
designing effective hash function families.

Having connected the variance expression for (1) with the
noise sensitivities at specific hamming distances w of the
hash family’s underlying function (the NS/ ’s), we are now
ready to directly connect the variance to the underlying
function template’s Fourier spectrum.

Proposition 3. Let f : {—1,1}" — {—1,1}. The fixed-
distance noise sensitivity of f at a distance 0 < w < n can
be computed in closed form in either of two ways:

p(w,n, |T|)f(T)?

TCsup(/)
NS, (f) = o Cu fb NS., (h)
() e e
w 1=1

where sup(f), p(w,n,|T|), €w, biw are defined in the Ap-
pendix.

The proof is based on the following connection between the
Fourier spectrum of f, NS.(f) and NS, (f):

3 Z
fj (Z) (1 — NS, (f) =

w=0

S () (s

2¢) 1 f(T)? = NS.(f) =

l\J\»—A

The result formalizes the intuition that as the mass of the
Fourier spectrum of f is placed on higher order coeffi-
cients, the average noise sensitivities at fixed distances
NS!,(f) increase, which in turn implies that the joint prob-
abilities Pr[h(z1) = h(z2)] decrease, thus reducing the
variance of (1) corresponding to the hash family. The last
equation shows that NS, (f) can be computed by evaluating
an n-th degree polynomial with coefficients (')NS;, (f) at
the point €/(1 — ¢). This means that given a closed-form
expression for NS, (f), we can recover the coefficients (the
NS/, (f)’s) exactly by evaluating NS.(f) at ¢, . . ., €, and
multiplying by the inverse of the Vandermonde matrix over
eo/(1 —€o),.-.,€n/(1 — €,), which can be evaluated in
closed form. The details of the procedure are available in
the Appendix.

3.1 Variable-Length Hash Families

We can also extend these results easily to variable-length
families of hash functions, as follows.

Definition 6. H; ,, ,) is a templated hash family with pa-
rameters f and p, where h is drawn by first choosing the
number of variables for the function, k € [n], with prob-
ability (7)p*(1 — p)"~* and then choosing h € Hy, uni-
formly at random.

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

As an example, we see that H(xoR,n,p) recovers the low-
density parity hash functions of Ermon et al. (2014). It
follows from Lemma 1 that when x and y are at hamming
distance w, we have

Pr [h(z) = h(y)]

bt (f,m,p)
n

k=0

h~Hpy,

n

1=y <Z> PP = p)"TINS,, (i)

k=0

so the technical results of Theorem 1 can be applied di-
rectly to this “mixture” of hash families.

4 Discrete Integration and Model Counting

Motivated by the connection between Fourier spectrum and
hash family variance, we introduce two new hash functions
for use in inference and model counting that show excel-
lent computational efficiency and also reasonable statisti-
cal power in practice when used in our templated construc-
tion from Definition 4. In particular, they are known to be
among the most noise sensitive monotone functions, where
a monotone function is one for which flipping an input bit
of z to obtain y implies that f(y) > f(z). This property
is useful for our applications because monotone functions
are easier to optimize over. The noise sensitivity of these
functions has been extensively studied in computational so-
cial choice theory, where they have been used to study the
formal properties of voting systems (ODonnell, 2003).

TRIBES functions are disjunctive normal form (DNF) for-
mulas defined by splitting n variables into b groups of size
a, and returning true if any of the groups have variables
that are all true and false otherwise (Ben-Or & Linial).
These groups of a variables are typically called coalitions.
a and b are chosen so that the probability that a randomly
chosen point evaluates to FALSE, (1 — 1/22)®, is as close
as possible to 1/2. Formally, if we write the coalitions as
Ay, ..., Ap C [n], then

b a

al‘n) = \/ /\ xAij

i=1 \j=1

TRIBES(z1, ...

Note that if z is selected uniformly at random from {0, 1}",
Pr[TRIBES(z) = 1] = 1 — (1 — 1/2%)". Tribes functions
can be represented compactly in conjunctive normal form
(CNF) using b extra variables, n clauses of length two, and
one clause of length b. This makes TRIBES functions es-
pecially well-suited for model counting applications.

MAIJORITY functions return true if the majority of their
inputs are true. Formally,

MAJ(z1,...,2,) =sgn(zy + -+ x, — n/2)

When n is even the MAJORITY template is instantiated
with an auxiliary bit drawn uniformly at random that sig-
nals in which direction ties should be broken. Using the
bijection between z and its complement & and the tie-
breaking random bit we see that Pr[MAJ(z) = 1] = 1/2
when z is selected uniformly at random from {0, 1}". Be-
cause MAJORITY can be represented as a linear constraint,
it is especially well-suited for discrete integration appli-
cations which use global optimization toolkits to answer
MAP queries (Ermon et al., 2013c).

Plh(x)=1.h(y)=1]

0.4
- @~ - XOR, p=1/4

0.3 XOR, p=1/2

TRIBES, p=1/2
0.2
—k— MAJORITY, p=1/2
0.1

0

Figure 1. Joint probabilities Pr[h(z) = 1, h(y) = 1] at distances
w=dg(z,y) =1,...,n, withn = 10, for XOR, TRIBES, and
MAIJORITY hash families H () at p = 1/2 and p = 1/4 for
XORs.

Figure 1 shows the clash probabilities for several hash fam-
ilies Hy,p,p), using our framework to compute them at
fixed distances w based on the known Fourier spectra of
the templates. We can see that when the probability p of
including variables in the hash function is 1/2, the par-
ity hash functions are uncorrelated at all distances. Fur-
thermore, as p decreases to 1/4 the correlation increases at
small distances but remains small for large w. Finally, both
TRIBES and MAJORITY are somewhat correlated at small
and large w, with MAJORITY being very highly negatively
correlated at w = n because flipping all the bits in = flips
the output of the function.

Our new hash functions can be used in a wide array of ap-
proximate inference and probabilistic counting techniques
such as ApproxMC (Chakraborty et al., 2013b), MBound
(Gomes et al., 2006a), WISH (Ermon et al., 2013c;b;a),
and others (Zhu & Ermon, 2015; Hadjis & Ermon, 2014).
Although they are not noise sensitive enough to give up-
per bounds with high probability, by substituting them for
parity constraints in these methods we show that in prac-
tice they obtain lower bounds an order of magnitude faster
than short parity constraints, the next best method. We fo-
cus on augmenting WISH with the new hash families, but
the method can be used in the other algorithms (Ivrii et al.,
2015; Achlioptas & Jiang, 2015; Belle et al., 2015) with
minor modifications.

WISH is an algorithm for approximately solving the dis-

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

crete integration problem »_ (o 1y« w(z). In a prob-
abilistic inference context w(x) is interpreted to be the
unnormalized probability mass of some distribution; in
particular, we use w(z) = [[, ¢Ya(za) or w(z) =
exp(f’o(x)). The log partition function, logZ =
log Eze{o,l}” exp(6’¢(x)), is necessary for computing
the log likelihood of evidence which can be used both as
a heuristic for stopping the training process early and to
compare which of a set of distributions are better models
for a fixed dataset.

The original WISH algorithm operates on the same prin-
ciple as the randomized algorithm A introduced earlier
for estimating the size of a large set S defined implicitly
through constraints (Ermon et al., 2013c). WISH uses hash
functions drawn from a universal hash family H to ran-
domly partition the domain of w in a pairwise-independent
way and performs a small number of MAP queries on w in
this constrained space to estimate specially-chosen quan-
tiles of the weight function with high probability. However,
the “density” of the parity functions required are impracti-
cal for large problems, and even the looser requirements
given in (Ermon et al., 2014) can be intractable for mod-
ern combinatorial optimization toolkits. Thus, we focus on
leveraging our new hash functions to obtain lower bounds
that, while not tight, are still useful in practice and can be
found much faster than previous approaches. To this end
we introduce THF-WISH-LB (Algorithm 1), a modifica-
tion of WISH that uses our new hash families for finding
lower bounds. Together with this new algorithm we also
present two new hash function templates, MAJORITY and
TRIBES, which are well suited for discrete integration and
model counting, respectively.

The hash families H used by THF-WISH-LB are parame-
terized by (3, the desired expected value Ejx[h(x)], as
well as the boolean function template f and number of
variables n. In order for THF-WISH-LB to provide lower
bounds on Z, it must be possible to choose hash family pa-
rameters as a function of 0 < 8 < 1 so that Ej,y[h(z)] <
B for all z € x. For example, when using TRIBES we se-
lect coalition sizes a, number of groups b, and number of
constraints k so that ab < n and (1 — (1 — 1/2%)%)* is as
tight a lower bound to 3 as possible. In practice, as n be-
comes large it is possible to select parameters for the hash
families to bring Ej,~4[h(z)] very close to S.

Theorem 2. Assume a small fixed accuracy parameter §
and constant o« < 0.0042, and a template hash family
’H(B Fnup) whose parameters, including p, can be selected as
a function of 0 < B < 1 so that Epy[h(x)] < 8. When
T > [In(n/)/a], THF-WISH-LB(w,n, T, H(,) will
not exceed log Z + log 16 with probability 1 — 4.

Proof. The proof closely follows that of Theorem 1 of (Er-

mon et al., 2013c) by applying Markov’s inequality to the
expectation Ej3[|[h~1(1) N S]], which is upper bounded
by S, followed by Chernoff bounds to bound the concen-
tration of the median of T' > [In(n/d)/«] trials about the
mean . O

Algorithm 1 THF-WISH-LB(w(z), n, T, H?f_mm)
fori=0,--- ,ndo
fort=0,---,T do
Choose hash family parameters for 7 so that
EhNH[h({L‘)] < 277,
Sample hash function h; 4 (x) ~ H.
w;¢ < max, w(xr) subject to the constraint

hi7t(l’) =1.
end for
M; + Median(wiyl, - 7wi,T)
end for

return log (Mo + Z;L:_Ol Mi+12i)

5 Experimental Evaluation
5.1 Partition Functions

We compare our partition function lower bounds with
Sparse XORs (Ermon et al., 2014) on grid Ising models.
These grid models are created on M2 binary variables tak-
ing values in {—1,1} with unary potentials on each vari-
able and binary potentials between all pairs of neighbors.
The unary potentials are ¢;(x;) = exp(fz;) and the bi-
nary potentials are v; ;(z;, x;) = exp(w;;x;x;). We con-
sider mixed field Ising models where the coupling strength
w;,; is drawn from [—w,w] and the unary potentials f
are in {0.1,1}. Estimating the log-partition function in
these models is challenging because the distribution be-
comes highly concentrated and multimodal as the coupling
strength is increased, which presents a challenge for classic
approaches like mean field and belief propagation.

We compare our method to SPARSE-WISH (Ermon et al.,
2014) and Mean Field and Belief Propagation implemented
in the 1ibDAI inference algorithm library (Mooij, 2010),
which also implements the Junction Tree algorithm we
use as ground truth. Because our goal is to find compu-
tationally efficient hash families that still provide useful
lower bounds on the partition function, we limit each MAP
query in the inner loop of THF-WISH-LB and SPARSE-
WISH to five minutes. Because the theoretically-motivated
density of variables in the sparse parity constraints used
by SPARSE-WISH was still too high for the solver to
find informative solutions within five minutes, we relaxed
the constraint density to 5% of the variables for all runs.
The results of the partition function estimates for grids
of varying coupling strengths are presented in Figure 2.
We see that MAJORITY-WISH recovers the true log par-
tition function almost exactly and performs as well as

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

400,
[IHE MAJORITY-WISH

IBHE Mean Field
|AA TRW-BP
300/{%% BP

/@@ SPARSE-WISH

Log partition function estimation error

—100

0 1 2 3 3 5
Coupling Strength w

Figure 2. Results on grid Ising models of size 15 x 15 for different
coupling strengths, with field strength of f = 0.1

SPARSE-WISH at all coupling strengths. Furthermore, all
instances of MAJORITY-WISH for both field strengths ter-
minated within three seconds and in 1.2 seconds on av-
erage, whereas the average time for the SPARSE-WISH
MAP queries was 30 seconds and 60 seconds for field
strengths 0.1 and 1, respectively.

5.2 Model Counting

Parity constraints are also difficult to reason about in the
model counting setting, where the goal is to estimate
the size of the set of solutions satisfying a set of con-
straints (Gomes et al., 2006a; 2007; 2006b; Chakraborty
et al., 2013b). This is the canonical #-P complete count-
ing problem. We focus on counting solutions to real-world
CNF formulas that encode problems in a wide range of
domains (latin squares, Langford’s problem, logistic plan-
ning, and hardware verification). These problems are de-
fined over hundreds to thousands of variables, and the
theoretically-required density of parity constraints needed
to find provable bounds on the model count are hopelessly
intractable for modern SAT solvers.

This suggests a natural application for TRIBES functions,
which are known to be among the most noise sensitive
monotone functions, and consequently easier to optimize
over. When parity constraints were chosen using the
theoretically-motivated densities from (Ermon et al., 2014)
we were unable to certify satisfiability for any of the prob-
lems within reasonable time frames, so we used the largest
number of variables per constraint that reliably terminated
within 15 minutes; in practice, this generated extremely
sparse constraints on the order of 3 to 4 variables per con-
straint on average.

In Table 1 we compare the lower bounds obtained by THF-
WISH-LB when using TRIBES functions and when using

very low-density parity constraints. We highlight in bold
the lower bounds and running times that are significantly
better than the competing method’s. Although there are
some instances for which parity constraints obtain better
lower bounds, the TRIBES-constrained lower bounds are
largely comparable with the parity lower bounds, whereas
the runtime t;.;, is competitive with the XOR running
times in all cases and 1 to 2 orders of magnitude faster on
a large subset of the benchmark.

Table 1. Approximate lower bounds across several model count-
ing problems. GT is ground truth (if known), L By, are the tribes
lower bounds, L B, are the XOR lower bounds, t;,; is the av-
erage time (s) per tribes instance, and .., is the average time
(s) per XOR instance. All counts are in log,,. Further problem
details are given in Table 2 in the Appendix.

INSTANCE GT LBirip LBaor tirib teor
LANG12 5 3 4 5 0
LANGI15 7 6 6 0 0
LANG16 8 6 6 10 1
LANG19 11 6 7 1 1
LANG20 12 9 9 7 1
LANG23 15 10 10 1 1
LANG24 — 10 10 1 1
LANG27 — 9 11 1 1
LANG28 — 12 10 1 1

LS8 11 10 10 0 1
LS9 17 13 16 0 1
LS10 24 18 19 1 209
Lsll1 33 25 24 28 623
LS12 — 32 29 34 658
Ls13 — 33 34 3 74
LS14 — 36 34 12 761
Ls15 — 39 34 51 829

20RDR45 — 29 29 1 523
23RDR45 — 27 10 7 800

2BITMAX6 97 25 25 20 3
9SYMML — 18 19 8 1
APEX75 — 40 59 17 24
FCLQ18 — 30 44 24 8
FCLQ20 — 35 45 19 9

VDAGRRCSW9 | — 70 99 32 151

6 Conclusion

This paper presented two main contributions: (i) a proce-
dure for creating compact hash families based on arbitrary
boolean function “templates”, and (ii) a theoretical connec-
tion between the template function’s Fourier spectrum and
the corresponding hash family’s key statistical properties.
Guided by this framework, we introduced two useful new
hash families, TRIBES and MAJORITY, and showed that
they yield comparable accuracy with significant improve-
ments in runtime on both discrete integration and model
counting problems.

Beyond Parity Constraints: Fourier Analysis of Hash Functions for Inference

Acknowledgements

We thank Ryan Williams for helpful discussions. This work was
partially supported by the Future of Life Institute (grant 2015-
143902) and Ford Motor Company (123213).

References

Achlioptas, Dimitris and Jiang, Pei. Stochastic integration via
error-correcting codes. In Proc. Uncertainty in Artificial Intel-
ligence, 2015.

Achlioptas, Dimitris, Mcsherry, Frank, and Scholkopf, Bernhard.
Sampling techniques for kernel methods. In Advances in Neu-
ral Information Processing Systems, pp. 335-342, 2002.

Asteris, Megasthenis and Dimakis, Alexandros G. LDPC codes
for discrete integration. Technical report, UT Austin, 2016.

Belle, Vaishak, Van den Broeck, Guy, and Passerini, Andrea.
Hashing-based approximate probabilistic inference in hybrid
domains. In Proceedings of the 31st Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2015.

Ben-Or, Michael and Linial, Nathan. Collective coin flipping.

Blum, Avrim. Random projection, margins, kernels, and feature-
selection. In Proceedings of the 2005 international conference
on Subspace, Latent Structure and Feature Selection, pp. 52—
68. Springer-Verlag, 2005.

Chakraborty, Supratik, Meel, Kuldeep, and Vardi, Moshe. A scal-
able and nearly uniform generator of SAT witnesses. In Proc.
of the 25th International Conference on Computer Aided Veri-
fication (CAV), 2013a.

Chakraborty, Supratik, Meel, Kuldeep, and Vardi, Moshe. A scal-
able approximate model counter. In Proc. of the 19th Inter-
national Conference on Principles and Practice of Constraint
Programming (CP), pp. 200-216, 2013b.

Ermon, Stefano, Gomes, Carla P., Sabharwal, Ashish, and Sel-
man, Bart. Embed and project: Discrete sampling with uni-
versal hashing. In Advances in Neural Information Processing
Systems (NIPS), pp. 2085-2093, 2013a.

Ermon, Stefano, Gomes, Carla P., Sabharwal, Ashish, and Sel-
man, Bart. Optimization with parity constraints: From binary
codes to discrete integration. In Proc. of the 29th Conference
on Uncertainty in Artificial Intelligence (UAI), 2013b.

Ermon, Stefano, Gomes, Carla P., Sabharwal, Ashish, and Sel-
man, Bart. Taming the curse of dimensionality: Discrete inte-
gration by hashing and optimization. In Proc. of the 30th In-
ternational Conference on Machine Learning (ICML), 2013c.

Ermon, Stefano, Gomes, Carla P., Sabharwal, Ashish, and Sel-
man, Bart. Low-density parity constraints for hashing-based
discrete integration. In Proc. of the 31st International Confer-
ence on Machine Learning (ICML), pp. 271-279, 2014.

Goldreich, Oded. Randomized methods in computation. Lecture
Notes, 2011.

Gomes, Carla P., Sabharwal, Ashish, and Selman, Bart. Near-
uniform sampling of combinatorial spaces using XOR con-
straints. In Advances in Neural Information Processing Sys-
tems (NIPS), 2006a.

Gomes, Carla P., Sabharwal, Ashish, and Selman, Bart. Model
counting: A new strategy for obtaining good bounds. In
Proc. of the 21st National Conference on Artificial Intelligence
(AAAI), pp. 54-61, 2006b.

Gomes, Carla P., van Hoeve, Willem Jan, Sabharwal, Ashish, and
Selman, Bart. Counting CSP solutions using generalized XOR
constraints. In Proc. of the 22nd National Conference on Arti-
ficial Intelligence (AAAI), 2007.

Hadjis, Stefan and Ermon, Stefano. Importance sampling over
sets: A new probabilistic inference scheme. In UAZ, 2014.

Hsu, Lun-Kai, Achim, Tudor, and Ermon, Stefano. Tight vari-
ational bounds via random projections and I-projections. In
Proc. of the 19th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2016.

Ivrii, Alexander, Malik, Sharad, Meel, Kuldeep S, and Vardi,
Moshe Y. On computing minimal independent support and its
applications to sampling and counting. Constraints, pp. 1-18,
2015.

Jerrum, Mark and Sinclair, Alistair. The markov chain monte
carlo method: An approach to approximate counting and inte-
gration. In Approximation Algorithms for NP-hard Problems,
pp- 482-520. PWS Publishing, Boston, MA, 1997.

Jordan, Michael 1., Ghahramani, Zoubin, Jaakkola, Tommi, and
Saul, L.K. An introduction to variational methods for graphical
models. Machine learning, 37(2):183-233, 1999.

Koller, Daphne and Friedman, Nir. Probabilistic graphical mod-
els: principles and techniques. MIT Press, 2009.

Mooij, Joris M. 1ibDAI: A free and open source C++ library for
discrete approximate inference in graphical models. Journal of
Machine Learning Research, 11:2169-2173, 2010.

ODonnell, Ryan William. Computational applications of noise
sensitivity. PhD thesis, Massachusetts Instt. of Tech., 2003.

Rajaraman, Anand and Ullman, Jeffrey David. Mining of Massive
Datasets. Cambridge University Press, New York, NY, USA,
2011. ISBN 1107015359, 9781107015357.

Sipser, Michael. A complexity theoretic approach to randomness.
In Proc. of the 15th ACM Symposium on Theory of Computing
(STOC), pp. 330-335, 1983.

Stockmeyer, Larry. On approximation algorithms for #P. SIAM
Journal on Computing, 14(4):849-861, 1985.

Vadhan, Salil. Pseudorandomness. Foundations and Trends in
Theoretical Computer Science, 2011.

Valiant, Leslie and Vazirani, Vijay. NP is as easy as detecting
unique solutions. Theoretical Computer Sci., 47:85-93, 1986.

Wainwright, Martin J. and Jordan, Michael I. Graphical models,
exponential families, and variational inference. Foundations
and Trends in Machine Learning, 1(1-2):1-305, 2008.

Zhao, Shengjia, Chaturapruek, Sorathan, Sabharwal, Ashish, and
Ermon, Stefano. Closing the gap between short and long xors
for model counting. In Proceedings of AAAI, 2016.

Zhu, Michael and Ermon, Stefano. A hybrid approach for prob-
abilistic inference using random projections. In Proceedings
of the 32nd International Conference on Machine Learning
(ICML-15), pp. 2039-2047, 2015.

