
Exact Sampling with Integer Linear Programs and Random Perturbations

Carolyn Kim
Computer Science Department

Stanford University
ckim@cs.stanford.edu

Ashish Sabharwal
Allen Institute for AI

Seattle, WA
ashishs@allenai.org

Stefano Ermon
Computer Science Department

Stanford University
ermon@cs.stanford.edu

Abstract

We consider the problem of sampling from a discrete proba-
bility distribution specified by a graphical model. Exact sam-
ples can, in principle, be obtained by computing the mode of
the original model perturbed with an exponentially many i.i.d.
random variables. We propose a novel algorithm that views
this as a combinatorial optimization problem and searches
for the extreme state using a standard integer linear program-
ming (ILP) solver, appropriately extended to account for the
random perturbation. Our technique, GumbelMIP, leverages
linear programming (LP) relaxations to evaluate the quality
of samples and prune large portions of the search space, and
can thus scale to large tree-width models beyond the reach
of current exact inference methods. Further, when the op-
timization problem is not solved to optimality, our method
yields a novel approximate sampling technique. We empir-
ically demonstrate that our approach parallelizes well, our
exact sampler scales better than alternative approaches, and
our approximate sampler yields better quality samples than a
Gibbs sampler and a low-dimensional perturbation method.

Introduction
Probabilistic models are a key component of modern statis-
tical machine learning (ML) and artificial intelligence (AI)
systems (Murphy 2012). Inference in such models is a com-
putational challenge that has been intensively researched
in physics, statistics, and computer science (Andrieu et al.
2003). The problem is known to be intractable in the worst
case, and approximate techniques are often used in prac-
tice. One of the most influential notions has been the idea
of Monte Carlo approximation, where the computation of
an expectation with respect to a complex model is approx-
imated using a sample average. The problem of drawing
samples from a general probabilistic model is therefore ex-
tremely important, and it is used as a building block inside
countless learning, inference, and even numerical analysis
algorithms. By far the most popular approach is the Markov
Chain Monte Carlo (MCMC) method. The idea is to set up
a Markov Chain that, in the limit, will converge to the target
distribution, and then draw samples by simulating the chain
for a sufficiently long time. Unfortunately, for many models
of interest, such chains take exponential time to converge.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We introduce a novel approach for sampling exactly from
arbitrary discrete probability distributions. Our approach is
based on the Gumbel-max idea (Gumbel and Lieblein 1954),
a property of Gumbel random variables with numerous ap-
plications in statistics and econometric, and which has re-
cently become popular in the ML community as well (Mad-
dison, Tarlow, and Minka 2014; Gane, Hazan, and Jaakkola
2014; Hazan and Jaakkola 2012; Papandreou and Yuille
2011; Tarlow, Adams, and Zemel 2012; Kappes et al. 2015;
Hazan, Maji, and Jaakkola 2013). This property means that
one can obtain samples from a probabilistic model by find-
ing the mode of a randomly perturbed distribution obtained
by perturbing the log-likelihood of each individual state with
i.i.d. Gumbel noise. Modern combinatorial optimization
tools such as integer linear programming (ILP) and weighted
constraint satisfaction solvers can often handle problems
with thousands of variables (Wolsey and Nemhauser 2014)
and are well-suited for computing modes of discrete prob-
ability distributions. Translating a sampling problem to an
optimization problem is therefore a big step forward.

Unfortunately, the Gumbel-max reduction cannot be di-
rectly used, as it requires too much “randomness” to gen-
erate an exponential number of Gumbel random variables,
and too much space to store them (i.e., the resulting opti-
mization problem could not even be encoded compactly).
To overcome this issue, we propose an approach inspired
by the recent A* sampling algorithm for continuous prob-
ability distributions (Maddison, Tarlow, and Minka 2014).
While we share with A* sampling the idea of instantiating
the randomness as needed in a “lazy” manner, our focus on
discrete distributions presents new challenges and opportu-
nities. We show how to make this approach practical us-
ing powerful linear programming (LP) relaxations to prune
“irrelevant” portions of the state space which can be safely
ignored without affecting exactness. We integrate this idea
into the commercial ILP solver CPLEX, transforming it into
a general-purpose sampler by introducing a Gumbel-based
randomization into its branch-and-cut search. Our approach
thus directly leverages many recent advances in combinato-
rial optimization, including parallel search (Boehning, But-
ler, and Gillett 1988; Johnson, Nemhauser, and Savelsbergh
2000). This opens a novel angle for parallelizing sampling
algorithms in a principled fashion.

Our experiments demonstrate the ILP-based sampler

scales to large-treewidth graphical models well beyond the
reach of current exact inference methods, including rejection
sampling and an adaptation of A* sampling to our discrete
setting. Furthermore, even though the approach is general-
purpose and oblivious to any special structure in the model,
it empirically scales very well on tractable distributions such
as tree-structured graphical models, for which LP relax-
ations employed by CPLEX are known to be tight (Sontag
et al. 2008). Our approach also naturally defines a new effi-
cient approximate sampling method, where we simply stop
the optimization after a given amount of time, outputting the
best solution found so far. Interestingly, information from
the LP relaxations (the optimality gap) can be used to eval-
uate the quality of the approximate sample. This is in stark
contrast with traditional MCMC techniques, where there is
generally no information on the quality of the results if the
chain is stopped earlier, as the chain might have missed im-
portant areas of the state space. We demonstrate that our
approximate sampler outperforms traditional methods such
as a Gibbs sampler as well as a recent low-dimensional per-
turbation approximation (Hazan, Maji, and Jaakkola 2013).

Preliminaries
Given a finite set Σ and w : Σ → R+, we seek a random-
ized algorithm that selects each σ ∈ Σ with a probability
proportional to w(σ), i.e., p(σ) = w(σ)/Z, where Z is the
partition function

∑
σ∈Σ w(σ). For ease of exposition, we

consider Σ = {0, 1}n, but the results extend naturally to
general categorical variables.

The Gumbel-max method uses the Gumbel distribution
to turn this sampling problem into an optimization prob-
lem (Maddison, Tarlow, and Minka 2014). The Gumbel dis-
tribution with location k, denoted Gumbel(k), can be de-
fined by its CDF Pr[Gumbel(k) ≤ g] = exp(− exp(−(g −
k))). Gumbel(k) has mean k + CE , where CE ≈
0.5772 is the Euler-Mascheroni constant, and variance
π2/6. Perhaps more intuitively, we can view Gumbel(k)
as approximating max1≤n≤exp(k) Yn, where Yn are i.i.d.
standard exponential distributions; and in fact, as k ap-
proaches infinity, max1≤n≤exp(k) Yn − k converges point-
wise to Gumbel(0) (Leadbetter, Lindgren, and Rootzén
1983). For b ∈ R, the Gumbel distribution “truncated”
at b, i.e., forced to be at most b, is defined by its CDF
Pr[TruncGumbel(k, b) ≤ g] = exp(− exp(−(min(g, b)−
k)))/ exp(− exp(−(b− k)))

The relevant properties of the Gumbel distribution are as
follows (Maddison, Tarlow, and Minka 2014). Let {γσ | σ ∈
Σ} be i.i.d. Gumbel(0) random variables. Then:

max
σ
{γσ + log(w(σ))} ∼ Gumbel(logZ) (1)

E
[
max
σ
{γσ + log(w(σ))}

]
= logZ + CE (2)

Pr
[
σ = arg max

σ
{γσ + log(w(σ))}

]
=
w(σ)

Z
(3)

These properties provide a way of computing the partition
function (eq. 2) and sampling from the distribution (eq. 3).

MIP Gumbel sampling
Our algorithm is closely related to A* sampling, a re-
cently introduced algorithm that exploits the Gumbel-max
method to draw (exact) samples from continuous density
functions (Maddison, Tarlow, and Minka 2014). Like A*
sampling, we also generate a sequence of i.i.d. Gumbel dis-
tributed random variables in a “lazy” and top-down manner.
Specifically, the (exponentially) large number of Gumbel
variates needed to fully specify the optimization problems
in (2) and (3) is only instantiated as needed by a branch-
and-bound search procedure. The crucial observation is that
in order to decide whether a node v can be pruned, it is
sufficient to know the maximum value of the Gumbel ran-
dom variables at the leaves of the subtree rooted at v, i.e.,
max{γσ | v is an ancestor of σ}. Thanks to a property of
Gumbel distributions (eq. 1), this value can be easily sam-
pled without actually instantiating all the other leaves.

Our approach is however tailored for discrete domains,
which presents several opportunities and advantages. We
can employ techniques from combinatorial optimization
such as tractable relaxations to obtain bounds on the objec-
tive, which can be used in a branch-and-bound scheme to
prune large portions of the search space. These approaches
are usually much more effective than their continuous coun-
terparts (Schlesinger 2009). In particular, we use LP relax-
ations, which are known the be very effective in dealing with
sparse structure of real world graphical models. Further, we
can leverage decades of engineering in ILP solvers.

ILP formulation
We consider an ILP formulation for the MAP inference
problem maxσ w(σ). For simplicity of exposition, we focus
on binary factors (i.e., pairwise interactions between vari-
ables), where w(σ) =

∏
i∈V ψi(σi)

∏
(i,j)∈E ψij(σi, σj)

for some edge set E. Rewriting in terms of log-
potentials, the MAP inference problem can be stated as
maxσ∈Σ

∑
i∈V θi(σi) +

∑
(i,j)∈E θij(σi, σj). This, in turn,

may be written as an ILP Q using binary variables {µi ∈
{0, 1} | i ∈ V } and {µij(ci, cj) ∈ {0, 1} | (i, j) ∈
E, ci, cj ∈ {0, 1}} (Wainwright and Jordan 2008):

max
µi,µij

∑
i∈V

(
θi(1)µi + θi(0) (1− µi)

)
+ (4)∑

(i,j)∈E

∑
ci,cj

θij(ci, cj)µij(ci, cj)

subject to the following constraints for all i ∈ V, (i, j) ∈ E:∑
cj∈{0,1} µi,j(0, cj) = 1−µi;

∑
cj∈{0,1} µi,j(1, cj) = µi;∑

ci∈{0,1} µi,j(ci, 0) = 1− µj ;
∑
ci∈{0,1} µi,j(ci, 1) = µj .

The objective function of Q can be upper bounded by
solving its LP relaxation LPrelax (Q), obtained by allowing
binary variables to take values in the continuous range [0, 1]
and turning the above constraints into linear inequalities.

Gumbel Sampling Using ILP
Algorithm 1 describes our sampling method, called Gum-
belMIP, that takes as input an ILP Q. It keeps track of the

Algorithm 1 GumbelMIP(Q: ILP with n variables)
1: XQ ← variables of Q . |XQ| = n
2: u ∼ Uniform[0, 1] ; γQ ← n log 2− log(− log(u)) . sample γQ ∼ Gumbel(n log 2)
3: σ ∼ Uniform({0, 1}n) . uniform random configuration associated with γQ
4: σ∗ ← σ; v∗ ← v(σ) + γQ . initialize current best configuration
5: L← {(Q,XQ, γQ, σ)} . the set of currently open sub-problems
6: while L is non-empty do
7: Select and remove (P,XP , γP , σ) from L . according to sub-problem selection heuristic
8: Solve the LP relaxation of sub-problem P
9: if LP relaxation is infeasible then Continue end if

10: Otherwise denote the LP solution by τ with objective value v
11: if v + γP ≤ v∗ then Continue end if . the subtree is suboptimal and can be pruned
12: if XP is empty then . τ must equal σ and thus be integer valued
13: σ∗ ← σ; v∗ ← v + γP
14: Continue
15: end if
16: Select x` from XP . according to branching heuristic
17: Branch on x` and create 2 new problems P [x` = 0] and P [x` = 1]
18: u ∼ Uniform[0, 1] . sample γ̃ ∼ TruncGumbel((|XP | − 1) log 2, γP)
19: γ̃ ← (|XP | − 1) log 2− log (exp(−γP + (|XP | − 1) log 2)− log u)
20: Let σ̃ be σ with σ̃` = 1− σ` and values for XP \ {x`} resampled uniformly from {0, 1}|XP |−1

21: if v(σ̃) + γ̃ > v∗ then σ∗ ← σ̃; v∗ ← v(σ̃) + γ̃ end if
22: Add (P [x` = σ`], XP \ {x`}, γP , σ) and (P [x` = 1− σ`], X \ {x`}, γ̃, σ̃) to L
23: end while
24: return σ∗

current best configuration σ∗ and its Gumbel-perturbed ob-
jective value v∗. It also maintains a set L of currently open
sub-problems, each defined by an ILP P obtained by freez-
ing the value of a subset of the variables of Q. The sub-
problem P is associated with its set of free variablesXP , the
max γP of (implicit) Gumbel perturbations of all configura-
tions consistent with P (i.e., those in the feasible set of P),
and a special configuration σ consistent with P whose Gum-
bel perturbation γσ is fixed to be γP . L initially contains
Q, along with the max of 2n independent Gumbel samples
and a uniformly randomly chosen configuration σ. As noted
earlier, the max of 2n independent Gumbel samples is itself
Gumbel distributed, and is thus easy to sample (Line 2). σ
becomes the current best configuration σ∗ and its log-weight
(the ILP objective value for σ) perturbed by γQ becomes v∗.

The branch-and-bound search for the ILP proceeds as fol-
lows. Using a sub-problem selection heuristic (e.g., the de-
fault in CPLEX), we choose (P,XP , γP , σ) from L. If the
LP relaxation of P is infeasible or if the LP relaxation objec-
tive perturbed by γP isn’t an improvement over the current
best perturbed objective v∗, we simply discard P . Other-
wise, if P has no free variables, we must have an integer fea-
sible solution in σ tied to the Gumbel perturbation γP . We
use this to update our running bound v∗, if it’s an improve-
ment. Then P is discarded. If P does have free variables,
we choose one, say x`, using a heuristic (e.g., the default in
CPLEX, but over-ridden by a forced variable selection step
in case all variables already have an integer value in the LP
relaxation, which would normally obviate the need for an
ILP solver to branch any further; a feasible integer solution
might however not be tied to any Gumbel perturbation).

The branching step now creates two new sub-problems,
by fixing x` to 0 and 1, resp. The sub-problem with x` = σ`
inherits the perturbation γQ along with the configuration σ
tied to it. The sub-problem with x` = 1 − σ` gets a freshly
sampled truncated Gumbel perturbation γ̃ that is distributed
as the max of 2|X|−1 independent Gumbels each truncated
to be no larger than γP (Line 19). In this sub-problem, γ̃ is
tied to a uniformly randomly chosen configuration σ̃ that is
consistent with σ on all frozen variables of P . If σ̃ improves
upon the current best σ∗, the latter is updated. After creating
the two sub-problems, P is discarded.

The branch-and-bound search continues as above until L
becomes empty, at which point it outputs σ∗ as the sample
and v∗ as its Gumbel perturbed objective value.

Relationship with A* sampling
Our method takes advantage of abstractions and algorithms
tailored to discrete spaces, resulting in a few technical differ-
ences from the A* sampling approach for continuous spaces.

Use of LP relaxations: LP relaxations have been shown
to be extremely effective for MAP/MPE inference and
combinatorial optimization (Wolsey and Nemhauser 2014;
Sontag et al. 2008). Our work demonstrates that LP relax-
ations can also speed up exact sampling.

Inheritance of configurations: The branching employed
by A* sampling would partition a search space into 3 parts: a
singleton set {γ̃} and two other disjoint subspaces. The stan-
dard decomposition of discrete spaces into subtrees (corre-
spoding to branching on a variable) is, however, much more
natural and amenable to compact representations, as well as
to the use of LP relaxations. At each branching point, rather

than sampling two fresh truncated Gumbel perturbations for
the children, we instead have one child inherit the perturba-
tion of the parent (Line 22). This preserves correcteness and
allows for traditional branching based on subtrees.

Heuristics for branching: Branching heuristics play a
major role in combinatorial search. A* sampling always
selects the subproblem with the highest upper bound (best
first). While this is a natural heuristic, other more advanced
heuristics are used in modern combinatorial optimization.
Building on the commercial solver CPLEX, GumbelMIP
can leverage decades of research on branching heuristics.

Parallelized searches: Similarly, significant progress has
been made in the past 20 years on parallelizing combinato-
rial search. Our approach can take advantage of these tech-
niques, dramatically reducing the runtime (see Figure 1a).

Analysis
The soundness of search space pruning based on LP relax-
ations guarantees that upon termination, σ∗ output by Gum-
belMIP will be the optimal solution of the perturbed opti-
mization problem. This, together with Gumbel-max proper-
ties discussed earlier and prior observations about lazy in-
stantiation of randomness (Maddison, Tarlow, and Minka
2014), thus guarantee the correctness of GumbelMIP.

The runtime is worst-case exponential, because Algo-
rithm 1 might have to explore the entire (exponentially
large) search space. This is consistent with the hardness of
sampling, which is believed to be intractable in the worst-
case (Jerrum and Sinclair 1997; Koller and Friedman 2009).
The empirical evaluation of the runtime is discussed in the
experimental section. Intuitively, certain “easy” classes of
probability distributions can be handled efficiently. For ex-
ample, consider the case w(σ) = 1 for all σ, i.e., a uniform
probability distribution over Σ. Then it can be shown that
the first configuration σ sampled in line 4 of Algorithm 1
will be the optimal solution for the perturbed optimization
problem. Assuming the LP relaxation provides a tight upper
bound, Algorithm 1 will be able to prune all nodes and finish
the search at the root node.

What happens if the search is aborted before the ILP is
solved to optimality? We show that the approach is robust
in the sense that its performance degrades gracefully with
optimality gap (i.e., how far we are from the optimum).

To gain some intuition, suppose we abort the search when
there are still open sub-problems in the set L that might
potentially improve upon the current best solution σ∗. Let
S = ∪(Q,XQ,γQ,σ)∈LFeasible(Q) \ {σ} where Feasible(Q)
denotes the set feasible (integer) solutions of the ILP Q. Let
S = {0, 1}n \ S denote its complement, i.e., the space that
has actually been explored so far. By design, GumbelMIP
maintains the invariant σ∗ = arg maxσ∈S logw(σ) + γσ ,
i.e., σ∗ is the best solution found so far. For any set
S, we know from Gumbel-max properties that Prγ [σ′ =

arg maxσ∈S logw(σ) +γσ] = w(σ′)∑
σ∈S w(σ) = p(σ′ | σ ∈ S).

As expected, the larger the set S is, the better the samples
are. When S = Σ, i.e., we have solved the problem to opti-
mality, we are sampling from the desired target density p(σ).

Another way to measure optimization progress is to con-
sider the rank of the current-best solution σ∗. Suppose σ∗
has the k-th largest perturbed objective value. Intuitively, the
smaller k is, the closer we are to the optimal solution and
can expect better samples. This intuition is formalized by
the following result,1 which generalizes Gumbel-max prop-
erties and relates the rank of the top k solutions (according
to the Gumbel-perturbed objective) to sampling without re-
placement from the original probability distribution p(σ):
Theorem 1. Let γ ∈ RΣ be a vector of |Σ| samples drawn
i.i.d. from Gumbel(0). Let w : Σ → R+ and w′(σ) =
logw(σ) + γσ . Then,

Pr
[
w′(σ(1)) ≥ · · · ≥ w′(σ(k)) ≥ w′(σ(`)) ∀` > k

]
=
w(σ(1))

Z

w(σ(2))

Z − w(σ(1))
· · · w(σ(k))

Z −
∑k−1
j=1 w(σ(j))

Interestingly, the information provided by the open nodes
in the set L and their LP relaxations allows us to (probabilis-
tically) estimate the rank of the current best solution σ∗.
Proposition 1. Suppose GumbelMIP stops early, outputs
σ∗, and has a set L of open sub-problems. Let k be the
rank of σ∗ when all configurations are ordered by decreas-
ing w′(σ) = logw(σ) + γσ . Then,

Eγ [k] ≤ 1+
∑

(Q,X,γQ,σ)∈L
LPrelax(Q)+γQ≥w′(σ∗)

1 +
(

2|X| − 1
)
·

(
1− F

(
w′(σ∗)− LPrelax (Q), γQ

))
where F (g, b) is the CDF of TruncGumbel(0, b) evaluated
at g.

LP relaxations of the open nodes in L (and, implicitly, the
optimality gap) not only provide us with a way to evaluate
the quality of the approximate samples produced by early-
stopping (through Theorem 1 and Proposition 1) but can
also be used to provide any-time upper and lower stochas-
tic bounds on the value of the partition function Z:
Theorem 2. Suppose GumbelMIP stops early. Let v∗ =
w′(σ∗) and U = max(Q, ,γQ,)∈L LPrelax (Q) + γQ. Let
CE ≈ 0.5772 be the Euler-Mascheroni constant. Then,

Eγ [v∗] ≤ logZ + CE ≤ Eγ [U].

Further, for any ε > 0 and δ > 0, suppose we repeat the
algorithm T ≥ (1/δ − 1)π2/(6ε2) times using indepen-
dently generated Gumbel perturbations {γ(t)}t. Let {v∗t }t
and {Ut}t be the corresponding samples of v∗ and U , resp.,
obtained by stopping the algorithm early. Then,

Pr

[
logZ + CE ≥

(
1

T

T∑
t=1

v∗t

)
− ε

]
≥ 1− δ

Pr

[
logZ + CE ≤

(
1

T

T∑
t=1

Ut

)
+ ε

]
≥ 1− δ

1Due to limited space, all proofs are deferred to the companion
technical report (Kim, Sabharwal, and Ermon 2015).

(a) Attractive cliques. (b) Tree structured.

Figure 1: Average runtime of exact sampling (over 100 samples) for hard and easy graphical models.

While sampling-based lower bounds on Z can typi-
cally be obtained using importance sampling and its vari-
ants (Koller and Friedman 2009; Gogate and Dechter 2007;
2011), upper bounds are much more difficult to obtain, re-
quiring either an exponential number of samples or strong
conditions on the skew of w(σ) (cf. Theorem 12.1 of Koller
and Friedman (2009), Chakraborty et al. (2014)). In con-
trast, Theorem 2 requires a polynomial number of samples
and does not make any assumption on w(σ). The bounds, of
course, may not be tight if GumbelMIP is stopped too early,
but they are guaranteed to be correct.

Experimental evaluation
We implemented GumbelMIP on top of the commercial ILP
solver CPLEX using “callbacks” to implement the Gumbel
randomization. This approach allows us to directly take ad-
vantage of CPLEX’s optimized search heuristics (line 8 and
17 in Algorithm 1) and parallel solving capabilities, where
multiple threads are used to explore the search tree and an-
alyze open sub-problems in L in parallel. We experimented
with up to 48 threads and observed significantly improved
runtimes with more threads.

Exact Sampling
GumbelMIP, like all known exact sampling algorithms,
needs exponential time in the worst case. In practice, how-
ever, models typically do not exhibit worst case behavior and
modern ILP solvers employ a host of heuristics to speed up
search. We evaluate the practical scalability of our approach.

We consider synthetic Ising models with n binary
variables xi ∈ {−1, 1} and potentials ψij(xi, xj) =
exp(wijxixj+fixi+fjxj). Models with mixed interactions
have i.i.d. wij drawn uniformly from [−w,w], while attrac-
tive models have i.i.d. wij drawn uniformly from [0, w]. fi
are drawn uniformly from [−1, 1].

In Figure 1a we report the runtime of GumbelMIP for ran-
domly generated attractive clique-structured Ising models as
a function of n. These models have treewidth n, making ex-
act inference and sampling impractical for large n. In prac-
tice, exact state-of-the-art techniques run out of memory for
n > 35. In contrast, our approach provides exact samples

for models with up to n = 60. While the runtime appears
to grow exponentially, the rate is milder and the memory
usage limited. Further, we can exploit parallelism to dras-
tically speed up the search even for a single sample (note
the plot is in log-scale). While recently introduced hashing-
based techniques can scale to models of similar size (Ermon
et al. 2013), their results are approximate, while we provide
exact samples. To the best of our knowledge, no existing
technique can provide exact samples for models of this size.

To evaluate the effectiveness of the LP relaxations we
use, we compare with an A*-like sampling algorithm that
uses a simpler bounding method (Line 8 of the pseudocode).
Specifically, we compute an upper bound on (4) as follows.
For each term in the sum (i.e., for each potential), we find the
largest value that is consistent with the current partial assign-
ment to the ILP variables, and sum up these upper bounds.
This relaxation is much weaker than an LP relaxation as it
does not enforce consistency of variable values across fac-
tors, but can be evaluated more efficiently. For ease of im-
plementation, we still employ perturbation inheritance. Fig-
ure 1a shows that GumbelMIP vastly outperforms this algo-
rithm, which cannot produce any sample when n > 35 (with
a 4 hour timeout). The use of powerful LP relaxations is thus
crucial for the technique on high dimensional problems.

Next, we compare the runtime of GumbelMIP with a vari-
ant of adaptive rejection sampling scheme that can lever-
age combinatorial optimization and is therefore closest to
GumbelMIP. Rejection sampling (Andrieu et al. 2003) re-
lies on a proposal distribution that is tractable (easy to sam-
ple from) and upper bounds the desired target density. The
closer these distributions are, the more efficient the sampling
is. Obtaining a good proposal distribution typically requires
domain-specific knowledge, but general proposal distribu-
tions can be constructed using ideas from optimization, as in
the OS* algorithm (Dymetman, Bouchard, and Carter 2012).
Specifically, we use a piecewise constant proposal distribu-
tion, obtained by partitioning the state space into J subtrees
and computing an upper bound for w(σ) in each of these J
subtrees. We use an LP relaxation for this upper bound, a
more sophisticated bounding technique than the ones in the
original OS*. While any partition can in principle be used,

(a) Marginals on 8× 8 grid. (b) Marginals on 8× 8 grid. (c) Any-time bounds on logZ.

Figure 2: Correlation vs true marginals after 5 and 10 minutes; any-time bounds on logZ.

we obtain it following the branching heuristics employed by
CPLEX when used to optimize w. We considered comput-
ing the partition and the corresponding upper bounds as a
preprocessing step and we therefore did not include the time
required to perform these steps in the runtime reported for
rejection sampling. We see in Figure 1a (black line) that
rejection sampling is faster than GumbelMIP for smaller in-
stances, but the runtime grows very quickly and it cannot
solve instances beyond n = 35.

Finally, to test our hypothesis that “simpler” models might
be easier to solve, we consider tree-structured graphical
models. These are tractable and support exact inference
(and sampling). GumbelMIP is general-purpose and a pri-
ori oblivious to this special structure, but might be able to
leverage it anyways because, e.g., the corresponding LP re-
laxations are known to be tight (Sontag et al. 2008). Indeed,
we see in Figure 1b that scalability is drastically improved
with respect to Figure 1a. Similar results are also obtained
on other tractable classes, e.g., fully disconnected models.

Approximate Sampling and Any-time Bounds on Z
GumbelMIP can be used as an approximate method when
the (perturbed) optimization problem is not solved to opti-
mality, with formal guarantees provided earlier.

To evaluate the empirical effectiveness of this approach,
we consider grid structured Ising models with low treewidth
for which we can compute ground truth marginal probabil-
ities, and evaluate the quality of the samples obtained if
the search is aborted before an optimal solution is found.
In Figures 2a (attractive case) and 2b (mixed interactions)
we compare with ground truth (using a scatter plot) the
marginals obtained by running GumbelMIP and a Gibbs
sampler each for 5 and 10 minutes respectively (using 200
independent samples). We see that in both cases Gum-
belMIP provides more accurate marginals than the Gibbs
sampler. The powerful heuristics employed by our optimizer
are able to quickly find a near-optimal solution, even though
the solver cannot prove its optimality. GumbelMIP there-
fore makes better use of the limited computational resources
available. We also compare with the PerturbAndMap ap-
proximate sampler (Hazan, Maji, and Jaakkola 2013) based
on the use of low dimensional Gumbel perturbations and ex-

Figure 3: Samples from a blocked Gibbs sampler after 100
iterations, for various block sizes.

act optimization. Although PerturbAndMap is faster, the
samples it generates can be quite inaccurate, emphasizing
the need for exact, high-dimensional Gumbel perturbations
used by GumbelMIP.

Figure 2c reports the any-time upper and lower bounds on
the partition function using Theorem 2. We see that CPLEX
finds an optimal solution very quickly (steep blue curve),
spending most of the runtime proving its optimality.

Blocked Gibbs with Large Blocks
GumbelMIP can be used to sample from arbitrary proba-
bility distributions. In particular, it can be used to sample
from posterior distributions over relatively large subsets of
variables (beyond what could be done by brute force). It
can therefore be used as a black box inside a blocked Gibbs
sampler. Rather than solving a single (perturbed) optimiza-
tion problem over all the variables, one can solve a sequence
of smaller sub-problems over subsets of the variables (the
block), while keeping the other variables fixed. This resem-
bles a block coordinate ascent approach, except the random-
ness is resampled after each coordinate ascent step. Since
GumbelMIP produces exact samples, the asymptotic prop-
erties of the blocked Gibbs sampler are preserved. The key
advantage is that by using large block sizes one can drasti-
cally reduce mixing times. In the extreme case where the
block includes all the variables, the chain mixes in one step.

We demonstrate the effectiveness of this approach on a
Restricted Boltzmann Machine (RBM) with v = 196 vis-
ible units and h = 100 hidden units, trained on MNIST
(handwritten digits) with constrastive divergence (Carreira-
Perpinan and Hinton 2005). We use a simpler and more ef-

fective ILP encoding for RBMs, replacing 4 binary variable
per pairwise factor with just one continuous variable tied to
the corresponding pairwise potential. In every iteration of
our blocked Gibbs sampler, we randomly select a block of k
variables and sample from their posterior, given all the other
variables. The case k = 1 corresponds to a traditional Gibbs
sampler with random ordering of variable updates. In Figure
3 we plot the state of the chain every 100 iterations, for vari-
ous block sizes. It is clear that using large block sizes makes
the chain converge significantly faster, although the cost per
iteration increases. Understanding the tradeoffs involved is
largely empirical and a subject for future research.

Conclusions
We introduced GumbelMIP, a novel exact sampler for dis-
crete probability distributions. By translating a sampling
problem to a (perturbed) optimization problem, we can
leverage a host of techniques from combinatorial opti-
mization and operations research, including LP relaxations,
branching heuristics, and parallel multi-threaded search.
The resulting algorithm is very efficient and the first one
to provide exact samples for high-treewidth models. Even
when the resulting problems cannot be solved to optimality,
approximate solutions provide high quality samples, as ex-
plained by our novel analysis of suboptimal solutions and
tools to rigorously characterize the quality of the samples in
terms of LP relaxations. Our technique can be used inside
a blocked Gibbs sampler, allowing a tradeoff between more
iterations and exact samples from larger blocks.

Acknowledgments
This work was supported by the Future of Life Institute
(grant 2015-143902) and by the National Science Founda-
tion Graduate Research Fellowship (grant DGE-114747).

References
Andrieu, C.; de Freitas, N.; Doucet, A.; and Jordan, M. I. 2003.
An introduction to MCMC for machine learning. Machine learning
50(1-2):5–43.
Boehning, R. L.; Butler, R. M.; and Gillett, B. E. 1988. A par-
allel Integer Linear Programming algorithm. European Journal of
Operational Research 34(3):393–398.
Carreira-Perpinan, M., and Hinton, G. 2005. On contrastive di-
vergence learning. In Proc. of the 10th International Workshop on
Artificial Intelligence and Statistics (AISTATS), 17.
Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.; and
Vardi, M. Y. 2014. Distribution-aware sampling and weighted
model counting for SAT. In Proc. of the 28th National Conference
on Artifical Intelligence (AAAI), 1722–1730.
Dymetman, M.; Bouchard, G.; and Carter, S. 2012. The OS*
algorithm: a joint approach to exact optimization and sampling.
CoRR abs/1207.0742.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B. 2013.
Taming the curse of dimensionality: Discrete integration by hash-
ing and optimization. In Proc. of the 30th International Conference
on Machine Learning (ICML).
Gane, A.; Hazan, T.; and Jaakkola, T. 2014. Learning with max-
imum a-posteriori perturbation models. In Proc. of the 17th Intl.
Conf. on Artificial Intelligence and Statistics (AISTATS).

Gogate, V., and Dechter, R. 2007. Approximate counting by sam-
pling the backtrack-free search space. In Proc. of the 22nd National
Conference on Artifical Intelligence (AAAI), volume 22, 198–203.
Gogate, V., and Dechter, R. 2011. SampleSearch: Impor-
tance sampling in presence of determinism. Artificial Intelligence
175(2):694–729.
Gumbel, E. J., and Lieblein, J. 1954. Statistical theory of extreme
values and some practical applications: a series of lectures, vol-
ume 33. US Government Printing Office Washington.
Hazan, T., and Jaakkola, T. 2012. On the partition function and
random maximum a-posteriori perturbations. In Proc. of the 29th
International Conference on Machine Learning (ICML).
Hazan, T.; Maji, S.; and Jaakkola, T. 2013. On sampling from
the gibbs distribution with random maximum a-posteriori pertur-
bations. In Advances in Neural Information Processing Systems,
1268–1276.
Jerrum, M., and Sinclair, A. 1997. The markov chain monte carlo
method: An approach to approximate counting and integration.
In Approximation Algorithms for NP-hard Problems. Boston, MA:
PWS Publishing. 482–520.
Johnson, E. L.; Nemhauser, G. L.; and Savelsbergh, M. W. 2000.
Progress in Linear Programming-based algorithms for Integer Pro-
gramming: An exposition. INFORMS Journal on Computing
12(1):2–23.
Kappes, J. H.; Swoboda, P.; Savchynskyy, B.; Hazan, T.; and
Schnörr, C. 2015. Probabilistic correlation clustering and image
partitioning using perturbed multicuts. In Scale Space and Varia-
tional Methods in Computer Vision. Springer. 231–242.
Kim, C.; Sabharwal, A.; and Ermon, S. 2015. Exact sampling
with integer linear programs and random perturbations. Technical
report, Stanford University.
Koller, D., and Friedman, N. 2009. Probabilistic graphical models:
principles and techniques. MIT Press.
Leadbetter, R.; Lindgren, G.; and Rootzén, H. 1983. Extremes and
related properties of random sequences and processes. Springer
series in statistics. Springer-Verlag.
Maddison, C. J.; Tarlow, D.; and Minka, T. 2014. A* sampling. In
Advances in Neural Information Processing Systems, 3086–3094.
Murphy, K. P. 2012. Machine learning: a probabilistic perspective.
MIT press.
Papandreou, G., and Yuille, A. L. 2011. Perturb-and-map ran-
dom fields: Using discrete optimization to learn and sample from
energy models. In Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, 193–200. IEEE.
Schlesinger, D. 2009. General search algorithms for energy mini-
mization problems. In Energy Minimization Methods in Computer
Vision and Pattern Recognition, 84–97. Springer.
Sontag, D.; Meltzer, T.; Globerson, A.; Jaakkola, T.; and Weiss,
Y. 2008. Tightening LP relaxations for MAP using message pass-
ing. In Proc. of the 24th Conference on Uncertainty in Artificial
Intelligence (UAI), 503–510.
Tarlow, D.; Adams, R. P.; and Zemel, R. S. 2012. Random-
ized optimum models for structured prediction. Journal of Ma-
chine Learning Research - Workshop and Conference Proceedings
22:1221–1229.
Wainwright, M. J., and Jordan, M. I. 2008. Graphical models,
exponential families, and variational inference. Foundations and
Trends in Machine Learning 1(1-2):1–305.
Wolsey, L. A., and Nemhauser, G. L. 2014. Integer and combina-
torial optimization. John Wiley & Sons.

Appendix: Proofs
Proof of Theorem 1. Let Yi be the event that ∀j >
i : w′(σ(i)) ≥ w′(σ(j)). From known properties

of Gumbel perturbations, Prγ [Yi] = w(σ(i))∑
j≥i w(σ(j))

=

w(σ(i))
Z−

∑
j<i w(σ(j))

. We can rewrite Y1 as the event that

w′(σ(1)) ≥ maxi≥2{w′(σ(i))}. The event Y2, which is
equal to the event that 2 = arg maxi≥2{w′(σ(i))}, is inde-
pendent of both the values of w′(σ(1)) (because the γσ’s are
independent) and maxi≥2{w′(σ(i))} (because the argmax
and max of a set of independent Gumbel variables are in-
dependent). This implies that Y1 is independent of Y2.
Therefore, Prγ [Y1, Y2] = Prγ [Y1] Prγ [Y2]. Extending this
argument, it may be verified that Prγ [Y1, Y2, . . . , Yk] =∏
i≤k Prγ [Yi], proving the claim.

Proof of Proposition 1. σ∗, by design, has rank one among
the configurations already explored by the algorithm. For
each sub-problem (Q,X, γQ, σ) that remains in L, w′Q =

LPrelax (Q) + γQ is an upper bound on w′(σ) for all of
the 2|X| configurations σ in the feasible set of Q. Clearly,
if w′Q < w′(σ∗), no configuration in Q will be ahead
of σ∗ in the ordering. Otherwise, in the worst case, all
2|X| configurations in Q have weight LPrelax (Q). In this
case, configuration σ will, by design, surely be ahead of
σ∗. Further, any of the remaining 2|X| − 1 configura-
tions σ in Q will be ahead of σ∗ if w′(σ∗) < w′(σ) ≤
LPrelax (Q) + γσ; thus, this happens with a probability
bounded above by Prγ [γσ > w′(σ∗)− LPrelax (Q)] which
is 1 − Prγ [γσ ≤ w′(σ∗) − LPrelax (Q)]. Since γσ is dis-
tributed as TruncGumbel(0, γQ), the last probability ex-
pression is simply the CDF of TruncGumbel(0, γQ) eval-
uated at w′(σ∗) − LPrelax (Q). Using linearity of expec-
tation across the 2|X| − 1 configurations in S that behave
this way, and adding one for σ, we obtain an upper bound
on the expected number of configurations in S ahead of σ∗
in the ranking. Summing over all such Q gives the desired
result.

Proof of Theorem 2. For the bounds on the expectation, fix
any γ and consider any stopping point. v∗ is the evalua-
tion of the objective function logw(σ) + γσ for some σ,
and is therefore a lower bound on the optimal value. If
the optimal σ∗ corresponds to a search node we have al-
ready explored, then logw(σ∗) + γσ∗ = v∗. Otherwise, for
the subproblem Q whose feasible set contains σ∗, we have
logw(σ∗) ≤ LPrelax (Q) and γσ∗ ≤ γQ . Therefore,

v∗ ≤ max
σ

logw(σ) + γσ ≤ max
(Q,γQ,k)∈L

LPrelax (Q) + γQ.

Taking expectations over γ, we obtain

Eγ [v∗] ≤ Eγ [max
σ

logw(σ) + γσ] ≤ Eγ [U].

The middle expression here, from eq. (2), is precisely
logZ + CE , proving the first part of the theorem.

We next show sample averages over sufficiently many
runs can be used to closely approximate Eγ [v∗] and Eγ [U],

and can thus provide high probability lower and upper
bounds on logZ + CE . In the t-th iteration, let w′∗t =

maxσ logw(σ) + γ
(t)
σ . Then w′∗t is distributed with mean

logZ + CE and variance π2/6. From the above argument,
we know that v∗t ≤ w′∗t . Using Cantelli’s inequality,

Pr

[
1

T

T∑
t=1

v∗t < (logZ + CE) + ε

]

≥ Pr

[
1

T

T∑
t=1

w′∗t < (logZ + CE) + ε

]

= 1− Pr

[
1

T

T∑
t=1

w′∗t ≤ (logZ + CE) + ε

]

≥ 1− π2/(6T)

ε2 + π2/(6T)

= 1− 1

6T (ε/π)2 + 1

Analogously,

Pr

[
1

T

T∑
t=1

Ut > (logZ + CE)− ε

]
≥ 1− 1

6T (ε/π)2 + 1

Setting T = (1/δ−1)π2/(6ε2) makes the bound become 1−
δ. Rearranging the terms then yields the desired result.

