
From Sampling to Model Counting

Carla P. Gomes† Joerg Hoffmann‡ Ashish Sabharwal† Bart Selman†

†Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, U.S.A.∗

{gomes,sabhar,selman }@cs.cornell.edu
‡University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria

joerg.hoffmann@deri.org

Abstract

We introduce a new technique for counting models
of Boolean satisfiability problems. Our approach
incorporates information obtained from sampling
the solution space. Unlike previous approaches, our
method does not require uniform or near-uniform
samples. It instead converts local search sampling
without any guarantees into very good bounds on
the model count with guarantees. We give a formal
analysis and provide experimental results showing
the effectiveness of our approach.

1 Introduction
Boolean satisfiability (SAT) solvers have been successfully
applied in a range of domains, most prominently, in AI plan-
ning and hardware and software verification. In these appli-
cations, the basic task is to decide whether a SAT encoding
of the underlying problem domain is satisfiable or not. Given
the tremendous progress in state of the art SAT solvers and
their applications, researchers have become interested in pur-
suing other questions concerning SAT encodings to further
extend the reach of SAT technology. For example, can one
randomly sample from the set of satisfying assignments? Or
can one count the total number of satisfying assignments?
In both a formal complexity theoretic sense as well as in
practice, these computational questions are much harder than
“just” determining satisfiability versus unsatisfiability of a
formula. Formally, counting the number of solutions is a
#P-complete problem, making it complete for a complexity
class at least as hard as the polynomial-time hierarchy (PH)
[Toda, 1989].1 On the positive side, efficient methods for
sampling and counting would open up a wide range of new
applications, e.g., involving various forms of probabilistic
reasoning[Darwiche, 2005; Roth, 1996; Littmanet al., 2001;
Park, 2002; Sanget al., 2005].

Uniform sampling and model counting are closely related
tasks. In particular, Jerrum, Valiant, and Vazirani[1986]
showed that for many combinatorial problems, if one can

∗Research supported by Intelligent Information Systems Insti-
tute (IISI), Cornell University (AFOSR grant F49620-01-1-0076)
and DARPA (REAL grant FA8750-04-2-0216).

1The class NP is the first of an infinite sequence of levels in PH.

sample uniformly from the set of solutions, then one can use
samples to obtain a highly accurate count of the total num-
ber of solutions.2 We will explain this strategy below. This
approach was exploited in the work onApproxCount [Wei
and Selman, 2005], where a model sampling procedure called
SampleSat [Wei et al., 2004] was used to provide samples of
satisfying assignments of the underlying SAT instance. In this
setting, the counting is only approximate — with no guaran-
tees on the accuracy — becauseSampleSat does in general
not sample purely uniformly; it uses Markov Chain Monte
Carlo (MCMC) methods[Madras, 2002; Metropoliset al.,
1953; Kirkpatricket al., 1983], which often have exponential
(and thus impractical) mixing times. In fact, the main draw-
back of Jerrumet al.’s counting strategy is that for it to work
well one needs (near-)uniform sampling, which is a very hard
problem in itself. Moreover, biased sampling can lead to ar-
bitrarily bad under- or over-estimates of the true count.

The key new insight of this paper is that, somewhat sur-
prisingly, using sampling with a modified strategy, one can
get very good lower-bounds on the total model count, with
high confidence guarantees,without any requirement on the
quality of the sampling. We will provide both a formal anal-
ysis of our approach and experimental results demonstrating
its practical effectiveness.

Our strategy,SampleCount , provides provably (proba-
bilistic) guaranteed lower-bounds on the model counts of
Boolean formulas using solution sampling. Interestingly, the
correctness of the obtained bounds holds even when the sam-
pling method used is arbitrarily bad; only the quality of the
bounds may go down (i.e., the bound may get farther away
from the true count on the lower side). Thus, our strategy re-
mains sound even when a heuristic-based practical solution
sampling method is used instead of a true sampler.

SampleCount can also be viewed as a way of extend-
ing the reach of exact model counting procedures, such as
Relsat [Bayardo Jr. and Pehoushek, 2000] and Cachet
[Sanget al., 2004].3 More specifically,SampleCount first
uses sampling to select a set of variables of the formula to
fix. Once a sufficient number of variables have been set,

2Conversely, one can also design a uniform solution sampler us-
ing a solution counter.

3These exact counters also provide a lower-bound on the true
model count if they are aborted before terminating.

the remaining formula can be counted using an exact model
counter. From the exact residual model count and the num-
ber of fixed variables, we can then obtain a lower-bound on
the total number of models. As our experiments will show,
these bounds can be surprisingly close to optimal. Moreover,
on many problem classes our method scales very well. To
mention just one example, we consider a circuit synthesis for-
mula from the literature, called3bitadd 32.cnf . This for-
mula can be solved quite easily with a local search style SAT
solver, such asWalksat [McAllesteret al., 1997]. However,
it is out of reach for all but the most recent DPLL style solvers
(MiniSat [Eén and S̈orensson, 2005] takes almost two hours
to find a single solution). Consequently, it is completely out
of reach of exact model counters based on DPLL. The origi-
nal formula has nearly 9,000 variables.SampleCount sets
around 3,000 variables in around 30 minutes, with the re-
maining formula solved byCachet in under two minutes.
The overall lower-bound on the model count — with 99%
confidence — thus obtained is an astonishing 101339 models.
We see that the formula has a remarkable number of truth as-
signments, yet exact counters cannot find any models after
over 12 hours of run time.

1.1 Main Idea
To provide the reader with an intuitive understanding of our
approach, we first give a high-level description of how sam-
pling can be used to count. We will then discuss how this can
be made to work well in practice.

(a) From Sampling to Counting[Jerrumet al., 1986]. Con-
sider a Boolean formulaF with M satisfying assignments.
Assuming we could sample these satisfying assignments uni-
formly at random, we can measure the fraction of all models
that havex1 set to True,M+, by taking the ratio of the num-
ber of assignments in the sample that havex1 set to True over
the sample size. This fraction will converge with increasing
sample size to the true fraction of models withx1 set posi-
tively, γ = M+/M. (For now, assume thatγ > 0.) It follows
immediately thatM = (1/γ)M+. We will call 1/γ the “mul-
tiplier” (> 0). We have thus reduced the problem of counting
the models ofF to counting the models of a simpler formula,
F+. We can recursively repeat the process, leading to a se-
ries of multipliers, until all variables are assigned or until we
can count the number of models of the remaining formulas
with an exact counter. For robustness, one usually sets se-
lected variable to the truth value that occurs more often in
the sample. This also avoids the problem of havingγ = 0 and
therefore an infinite multiplier. (Note that the more frequently
occurring truth value gives a multiplier of at most 2.)

(b) ApproxCount [Wei and Selman, 2005]. In
ApproxCount , the above strategy is made practical by
using a SAT solution sampling method calledSampleSat
[Wei et al., 2004]. Unfortunately, there are no guarantees
on the uniformity of the samples fromSampleSat . Al-
though the counts obtained can be surprisingly close to the
true model counts, one can also observe cases where the
method significantly over-estimates or under-estimates. Our
experimental results will confirm this behavior.

(c) SampleCount . Our approach presented here uses a
probabilistic modification of strategy (a) to obtain true accu-

rate counts in expectation. The key strength ofSampleCount
is that it works no matter how biased the model sampling is,
thereby circumventing the main drawback of approach (a).
Instead of using the sampler to select the variable setting and
compute a multiplier, we use the sampler only as a heuristic
to determinein what order to set the variables. In particu-
lar, we use the sampler to select a variable whose positive
and negative setting occurs most balanced in our set of sam-
ples (ties are broken randomly). Note that such a variable
will have the highest possible multiplier (closest to 2) in the
SampleCount setting discussed above. Informally, setting
the most balanced variable will divide the solution space most
evenly (compared to setting one of the other variables). Of
course, as we noted, our sampler may be heavily biased and
we therefore cannot really rely on the observed ratio between
positive and negative settings of a variable. Interestingly, we
can simply set the variable to a randomly selected truth value
and use the multiplier 2. This strategy will still give — in ex-
pectation — the true model count. A simple example shows
why this is so. Consider our formula above and assumex1 oc-
curs most balanced in our sample. Let the model count ofF+

be 2M/3 and ofF− beM/3. If we select with probability 1/2
to setx1 to True, we obtain a total model count of 2×2M/3,
i.e., too high; but, with probability 1/2, we will set the vari-
able to False, obtaining a total count of 2×M/3, i.e., too low.
Overall, our expected (average) count will be exactlyM.

Technically, the expected total model count is correct be-
cause of the linearity of expectation. However, we also
see that we may have significant variance between specific
counts, especially since we are setting a series of variables
in a row (obtaining a sequence of multipliers of 2), until we
have a simplified formula that can be counted exactly. In fact,
in practice, the total counts distributions (over different runs)
are often heavy-tailed[Kilby et al., 2006]. To mitigate the
fluctuations between runs, we use our samples to select the
best variables to set next. Clearly, a good heuristic would be
to set such “balanced” variables first. We useSampleSat
to get guidance on finding such balanced variables. The ran-
dom value setting of the selected variable leads to an expected
model count that is equal to the actual model count of the
formula. We show how this property can be exploited us-
ing Markov’s inequality to obtain lower-bounds on the total
model count with predefined confidence guarantees. These
guarantees can be made arbitrarily strong by repeated itera-
tions of the process.

We further boost the effectiveness of our approach by using
variable “equivalence” when no single variable appears suf-
ficiently balanced in the sampled solutions. For instance, if
variablesx1 andx2 occur with the same polarity (either both
positive or both negative) in nearly half the sampled solutions
and with a different polarity in the remaining, we randomly
replacex2 with eitherx1 or x1, and simplify. This turns out to
have the same positive effect as setting a single variable, but is
more advantageous when no single variable is well balanced.

Our experimental results demonstrate that in practice,
SampleCount provides surprisingly good lower-bounds —
with high confidence and within minutes — on the model
counts of many problems which are completely out of reach
of current exact counting methods.

2 Preliminaries
Let V be a set of propositional (Boolean) variables that take
value in the set{0,1}. We think of 1 as True and 0 as False.
Let F be a propositional formula overV. A solution or model
of F (also referred to as a satisfying assignment forF) is a
0-1 assignment to all variables inV such thatF evaluates to
1. Propositional Satisfiabilityor SAT is the decision problem
of determining whetherF has any models. This is the canon-
ical NP-complete problem. In practice, one is also interested
in finding a model, if there exists one.Propositional Model
Countingis the problem of computing the number of models
for F . This is the canonical #P-complete problem. It is the-
oretically believed to be significantly harder than SAT, and
also turns out to be so in practice.

The correctness guarantee for our algorithm relies on ba-
sic concepts from probability theory. LetX andY be two
discrete random variables. Theexpected valueof X, denoted
E [X], equals∑x xPr[X = x]. Theconditional expectationof
X given Y, denotedE [X |Y], is a function ofY defined as
follows: E [X |Y = y] = ∑x xPr[X = x |Y = y]. We will need
the following two results whose proof may be found in stan-
dard texts on probability theory.

Proposition 1 (The Law of Total Expectation). For any dis-
crete random variables X and Y,E [X] = E [E [X |Y]].

Proposition 2 (Markov’s inequality). For any random vari-
able X,Pr[X > kE [X]] < 1/k.

3 Model Counting Using Solution Sampling
This section describes our sample-based model counting al-
gorithm, SampleCount (see Algorithm 1). The algorithm
has three parameters:t, the number of iterations;z, the num-
ber of samples for each variable setting; andα, the “slack”
factor, which is a positive real number. The input is a formula
F overn variables. The output is a lower-bound on the model
count ofF . SampleCount is a randomized algorithm with
a high probability of success. We will shortly formalize its
success probability quantitatively as Theorem 1.

SampleCount is formally stated as Algorithm 1 and de-
scribed below. SampleCount performs t iterations onF
and finally reports the minimum of the counts obtained in
these iterations. Within an iteration, it makes a copyG
of F and, as long asG is too hard to be solved by an
exact model counting subroutine,4 does the following. It
calls SampleSolutions(G,z) to sample up toz solutions
of G; if the sampling subroutine times out, it may re-
turn fewer thanz samples.5 Call this set of solutionsS.
GetMostBalancedVar(S) selects a variableu of G whose
positive and negative occurrences inSare as balanced as pos-
sible, i.e., as close to|S|/2 each as possible. Ties are bro-
ken randomly. Similarly,GetMostBalancedVarPair(S)

4This is decided based on the number of remaining variables
or other natural heuristics. A common strategy is to run an exact
counter for a pre-defined amount of time[Wei and Selman, 2005].

5Even when no samples are found, the procedure can continue
by selecting a random variable. Of course, the quality of the bound
obtained will suffer.

Params: integerst,z; realα > 0
Input : A CNF formulaF overn variables
Output : A lower-bound on the model count ofF
begin

minCount← 2n

for iteration← 1 to t do
G← F
s← 0
until G becomes feasible forExactModelCount do

s← s+1
S← SampleSolutions(G,z)
u← GetMostBalancedVar(S)
(v,w)← GetMostBalancedVarPair(S)
r ← a random value chosen uniformly from{0,1}
if balance(u)≥ balance(v,w) then

setu to r in G
else

if r = 0 then replacew with v in G
else replacew with ¬v in G

Simplify(G)

count← 2s−α · ExactModelCount(G)
if count< minCountthen

minCount← count

return Lower-bound:minCount
end

Algorithm 1 : SampleCount

selects a variable pair(v,w) whose same and different occur-
rences are as balanced as possible. Here “same occurrence”
in a solution means that either bothv andw appear positively
or they both appear negatively. Ifu is at least as balanced
as (v,w), SampleCount uniformly randomly setsu to 0 or
1 in G. Otherwise, it uniformly randomly replacesw with
eitherv or ¬v, forcing a literal equivalence. NowG is sim-
plified by unit propagating this variable restriction, it is tested
again for the possibility of exact counting, and, if necessary,
the sampling and simplification process is repeated. OnceG
comes within the range of the exact counting subroutine after
s simplification steps, the number of remaining models inG
is computed. This, multiplied with 2s−α , is the final count for
this iteration. Aftert iterations, the minimum of these counts
is reported as the lower-bound.

By setting variables and equivalences, the original formula
is reduced in size. By doing this repeatedly, we eventually
reach a formula that can be counted exactly.SampleCount
provides a practically effective way of selecting the variables
to set or the equivalence to assert. Each time it looks for the
most evenly way to divide the set of remaining solutions. By
picking one of the two subsets randomly, we obtain real guar-
antees (see Section 3.1) and the formula is eventually suffi-
ciently simplified to enable an exact count. The sampling is
used to attempt an as evenly as possible division of the solu-
tion space. The better this works, the better our lower-bound.
But we don’t need any guarantees on the sampling quality;
we will still obtain a valid, non-trivial lower-bound.

3.1 Correctness Analysis ofSampleCount
We now analyzeSampleCount as a randomized algorithm
and show that the probability that it provides an incorrect
lower-bound on an input formula decreases exponentially to
zero with the number of iterations,t, and the slack factor,α.

Somewhat surprisingly, as we discuss below, the bound on
the error probability we obtain is independent of the number
z of samples used and thequality of the samples (i.e., how
uniformly they are distributed in the solution space).

Theorem 1. For parameters(t,z,α), the lower-bound re-
turned bySampleCount is correct with probability at least
1− 2−αt independent of the number and quality of solution
samples.

Proof. Let 2s∗ ,s∗ > 0, be the true model count ofF . Sup-
poseSampleCount returns an incorrect lower-bound, i.e.,
minCount> 2s∗ . This implies thatcount> 2s∗ in all of the
t iterations. We will show that this happens in any single iter-
ation with probability at most 2−α . By probabilistic indepen-
dence of thet iterations, the overall error probability would
then be at most 2−αt , proving the theorem.

Fix any iteration ofSampleCount . When executing the
algorithm, as variables ofG are fixed or replaced with an-
other variable within the inner (until-do) loop, G is repeat-
edly simplified and the number of variables in it is reduced.
For the analysis, it is simpler to consider a closely related for-
mula ρ(G) over all n variables. At the start of the iteration,
ρ(G) = G = F . However, within the inner loop, instead of
fixing a variableu to 0 or 1 or replacingw with v or ¬v and
simplifying (as we did forG), we add additional constraints
u= 0,u= 1,w= v, orw=¬v, respectively, toρ(G). Clearly,
at any point during the execution ofSampleCount , the solu-
tions ofρ(G) are isomorphic to the solutions ofG; every so-
lution of G uniquely extends to a solution ofρ(G) and every
solution ofρ(G) restricted to the variables ofG is a solution
of G. In particular, the number of solutions ofG is always the
same as that ofρ(G). Further, every solution ofρ(G) is also
a solution ofF .

Let Ĝ denote the final formulaG on which the subroutine
ExactModelCount(G) is applied afters variable restric-
tions. Note thats itself is a random variable whose value is
determined by which variables are restricted to which random
value and how that propagates to simplifyG so that its resid-
ual models may be counted exactly. Consider the variant of
Ĝ defined on alln variables,ρ(Ĝ). ρ(Ĝ) is a random formula
determined byF and the random bits used in the iteration. Fi-
nally, the variablecountfor this iteration is a random variable
whose value is 2s−α times the model count ofρ(Ĝ). We are
interested in the behavior ofcountas a random variable.

Recall that every solution ofρ(Ĝ) is also a solution ofF .
For every solutionσ of F , let Yσ be an indicator random
variable which is 1 iffσ is a solution ofĜ. Then,count=
2s−α ∑σ Yσ . We will compute the expected value ofcountus-
ing the law of total expectation:E [count] = E [E [count| s]].

Fix s. For eachσ , Pr[Yσ = 1 | s] equals the probability that
each of thesvariable restrictions within the inner loop is con-
sistent withσ , i.e., if σ hasu = 0 thenu is not restricted to 1,
if σ hasv = w thenw is not replaced with¬v, etc. Because
of the uniformly random valuer used in the restrictions, this
happens with probability exactly1/2 in each restriction. Note
that thes restrictions set or replaces different variables, and
are therefore probabilistically independent with respect to be-
ing consistent withσ . Consequently, Pr[Yσ = 1 | s] = 2−s.

This implies that the conditional expectation ofcount given
s is E [count| s] = E [2s−α ∑σ Yσ | s] = 2s−α ∑σ E [Yσ | s] =
2s−α ∑σ Pr[Yσ = 1 | s] = 2s−α ∑σ 2−s = 2−α ∑σ 1. SinceF
has 2s

∗
solutions, we haveE [count| s] = 2s∗−α . Applying

the law of total expectation,E [count] = E [E [count| s]] =
E

[
2s∗−α

]
= 2s∗−α .

Finally, using Markov’s inequality, Pr
[
count> 2s∗

]
<

E [count]/2s∗ = 2−α . This proves that the error probability in
any single iteration is at most 2−α (in fact, strictly less than
2−α). From our argument at the beginning of this proof, the
overall probability of error aftert iterations is less than 2−αt .
Since we did not use any property of the number or quality of
samples, the error bound holds independent of these.

We end with a discussion of the effect of the number of
samples,z, on SampleCount . It is natural to expect more
samples to lead to a “better” bound at the cost of a higher
runtime. Note, however, thatzdoes not factor into our formal
result above. This is, in fact, one of the key points of this
paper, that we provide guaranteed bounds without making
any assumptions whatsoever on the quality of the sampling
process or the structure of the formula. Without any such
assumptions, there is no reason for more samples to guide
SampleCount towards a better lower-bound. In the worst
case, a highly biased sampler could output the same small set
of solutions over and over again, making more samples futile.

However, in practice, we do gain from any sampling pro-
cess that is not totally biased. It guides us towards balanced
variables whose true multipliers are close to 2, which reduces
probabilistic fluctuations arising from randomly fixing the se-
lected variables. Indeed, under weak uniformity-related as-
sumptions on the sampler and assuming the formula has a
mix of balanced and imbalanced variables, a higher number
of samples will reduce the variation in the lower-bound re-
ported bySampleCount over several runs.

4 Experimental Results
We conducted experiments on a cluster of 3.8 GHz Intel
Xeon machines with 2GB memory per node running Linux.
The model counters used wereSampleCount , Relsat ver-
sion 2.00 with counting,Cachet version 1.2 extended to re-
port partial counts, andApproxCount version 1.2. Both
SampleCount andApproxCount internally useSampleSat
for obtaining solution samples.SampleCount was created
by modifyingApproxCount to ignore its sample-based mul-
tipliers, fix the most balanced variables at random, and ana-
lyze equivalences, and by creating a wrapper to perform mul-
tiple iterations (t) with the specified slack factorα.

In all our experiments withSampleCount , α andt were
set so thatαt = 7, giving a correctness confidence of 1−
2−7 = 99% (see Theorem 1).t ranged from 1 to 7 so as to
keep the runtimes ofSampleCount well below two hours,
while the other model counters were allowed a full 12 hours.
The number of samples per variable setting,z, was typically
chosen to be 20. Our results demonstrate thatSampleCount
is quite robust even with so few samples. Of course, it can
be made to produce even better results with more samples
of better quality, or by using a “buckets” strategy that we will

Table 1: Performance ofSampleCount compared with exact counters and with an approximate counter without guarantees.

SampleCount Exact Counters ApproxCount

Instance True Count (99% confidence) Relsat Cachet (without guarantees)
Models Time Models Time Models Time Models Time

CIRCUIT SYNTH.

2bitmax6 2.1×1029 ≥ 2.4×1028 29 sec 2.1×1029 66 sec 2.1×1029 2 sec ≈ 5.6×1028 8 sec
3bitadd32 — ≥ 5.9×101339 32 min — 12 hrs — 12 hrs ≈ 7.3×10941 43 min

RANDOM k-CNF

wff-3-3.5 1.4×1014 ≥ 1.6×1013 4 min 1.4×1014 2 hrs 1.4×1014 7 min ≈ 8.4×1013 11 sec
wff-3-1.5 1.8×1021 ≥ 1.6×1020 4 min ≥ 4.0×1017 12 hrs 1.8×1021 3 hrs ≈ 9.3×1018 8 sec
wff-4-5.0 — ≥ 8.0×1015 2 min ≥ 1.8×1012 12 hrs ≥ 1.0×1014 12 hrs ≈ 4.2×1015 11 sec

LATIN SQUARE

ls8-norm 5.4×1011 ≥ 3.1×1010 19 min ≥ 1.7×108 12 hrs ≥ 1.9×107 12 hrs ≈ 2.7×1012 5 sec
ls9-norm 3.8×1017 ≥ 1.4×1015 32 min ≥ 7.0×107 12 hrs ≥ 1.7×107 12 hrs ≈ 9.5×1017 11 sec
ls10-norm 7.6×1024 ≥ 2.7×1021 49 min ≥ 6.1×107 12 hrs ≥ 2.4×107 12 hrs ≈ 2.1×1027 22 sec
ls11-norm 5.4×1033 ≥ 1.2×1030 69 min ≥ 4.7×107 12 hrs ≥ 1.2×107 12 hrs ≈ 5.1×1040 1 min
ls12-norm — ≥ 6.9×1037 50 min ≥ 4.6×107 12 hrs ≥ 1.5×107 12 hrs ≈ 1.8×1051 8 min
ls13-norm — ≥ 3.0×1049 67 min ≥ 2.1×107 12 hrs ≥ 2.0×107 12 hrs ≈ 4.1×1064 12 min
ls14-norm — ≥ 9.0×1060 44 min ≥ 2.6×107 12 hrs ≥ 1.5×107 12 hrs ≈ 2.3×1089 18 min
ls15-norm — ≥ 1.1×1073 56 min — 12 hrs ≥ 9.1×106 12 hrs ≈ 5.6×10115 2 hrs
ls16-norm — ≥ 6.0×1085 68 min — 12 hrs ≥ 1.0×107 12 hrs ≈ 5.4×10123 2.5 hrs
LANGFORD PROBS.

lang-2-12 1.0×105 ≥ 4.3×103 32 min 1.0×105 15 min 1.0×105 4 hrs ≈ 3.7×105 1.5 min
lang-2-15 3.0×107 ≥ 1.0×106 60 min ≥ 1.8×105 12 hrs ≥ 1.1×105 12 hrs ≈ 7.4×1010 23 min
lang-2-16 3.2×108 ≥ 1.0×106 65 min ≥ 1.8×105 12 hrs ≥ 1.0×105 12 hrs ≈ 6.3×1010 6 min
lang-2-19 2.1×1011 ≥ 3.3×109 62 min ≥ 2.4×105 12 hrs ≥ 1.1×105 12 hrs ≈ 1.2×1014 12 min
lang-2-20 2.6×1012 ≥ 5.8×109 54 min ≥ 1.5×105 12 hrs ≥ 1.0×105 12 hrs ≈ 9.9×1015 24 min
lang-2-23 3.7×1015 ≥ 1.6×1011 85 min ≥ 1.2×105 12 hrs ≥ 8.4×104 12 hrs ≈ 1.3×1020 75 min
lang-2-24 — ≥ 4.1×1013 80 min ≥ 4.1×105 12 hrs — 12 hrs ≈ 1.3×1022 1.5 hrs
lang-2-27 — ≥ 5.2×1014 111 min ≥ 1.1×104 12 hrs — 12 hrs ≈ 1.7×1033 3 hrs
lang-2-28 — ≥ 4.0×1014 117 min ≥ 1.1×104 12 hrs — 12 hrs ≈ 2.3×1026 2 hrs

briefly outline in Section 5. On the other hand,ApproxCount
often significantly under- or over-estimated the number of
solutions with 20 samples. We therefore allowed it around
100 samples per variable setting in all our runs, except for
the very easy instances (circuit synthesis and random for-
mulas) where it used 1000 samples. Other parameters of
ApproxCount were set so as to obtain the desired number of
samples in a reasonable amount of time fromSampleSat . A
local search “cutoff” between 2,000 and 20,000 was sufficient
for most problems, while the Langford instances required a
cutoff of 100,000 to obtain enough samples. Finally, both
SampleCount and ApproxCount were set to callCachet
when typically between 50 and 350 variables remained unset.

Table 1 summarizes our main results, where we evaluate
our approach on formulas from four domains: circuit syn-
thesis, randomk-CNF, Latin square, and Langford problems.
We see thatSampleCount scales well with problem size
and provides good high-confidence lower-bounds close to the
true counts, in most cases within an hour. It clearly out-
performs exact counters, which almost always time out after
12 hours, providing counts that are several orders of magni-
tude below those ofSampleCount . We also report results

on ApproxCount even though the comparison is not really
meaningful asApproxCount does not provide any correct-
ness guarantees. Indeed, it, for example, under-estimates the
count by at least 10398 on 3bitadd 32, and over-estimates
by 107 (with an increasing trend) on the Latin square for-
mulas. (Of course, there are also classes of formulas where
ApproxCount appears to count quite accurately when given
good quality samples.) We discuss the results in detail below.

The circuit synthesis formulas are for finding minimal size
circuits for a given Boolean function. These are known to
quickly become very difficult for DPLL style procedures.
The instance2bitmax 6 is still easy for exact model count-
ing procedures, andSampleCount also gets a very good
lower-bound quickly.3bitadd 32, on the other hand, was
only recently solved for a single solution usingMiniSat in
about 6,000 seconds.3bitadd 32 is certainly far beyond
the reach of exact counting. The total solution count for
this formula is astonishing;SampleCount reports a lower-
bound of 5.9× 101339. Note that the formula has close to
9,000 variables and therefore the solution set is still an expo-
nentially small fraction of the total number of assignments.
SampleCount sets around 3,000 variables in around 30 min-

Table 2: Comparison ofSampleCount with MBound, both with 99% confidence.

Instance SampleCount MBound Relsat Cachet
Models Time Models Time Models Models Time

Ramsey-20-4-5 ≥ 3.3×1035 3.5 min ≥ 1.2×1030 23 min ≥ 9.1×109 ≥ 9.0×1011 12 hrs

Ramsey-23-4-5 ≥ 1.4×1031 53 min ≥ 1.8×1019 25 min ≥ 6.8×105 ≥ 8.4×106 12 hrs

Schur-5-100 ≥ 1.3×1017 20 min ≥ 2.8×1014 25 min ≥ 8.1×104 ≥ 1.0×1014 12 hrs

Schur-5-140 — 12 hrs ≥ 6.7×107 1 hr — — 12 hrs

fclqcolor-18-14-11 ≥ 3.9×1050 3.5 min ≥ 2.1×1040 28 sec ≥ 1.2×1031 ≥ 2.4×1033 12 hrs

fclqcolor-20-15-12 ≥ 3.1×1057 6 min ≥ 2.2×1046 2 min ≥ 9.0×1027 ≥ 8.6×1038 12 hrs

utes, with the remaining formula solved byCachet in un-
der two minutes. Finally,ApproxCount seriously under-
estimates the true count, reporting only 9.3×10941.

Our random formulas are selected from the under-
constrained area, i.e., with clause-to-variable ratios below the
SAT-UNSAT threshold. As noted by Bayardo Jr. and Pe-
houshek [2000], such formulas have a large number of as-
signments and are much harder to count than formulas of the
same size near the phase transition. The table gives results
on three such formulas:wff-3-150-525 , wff-3-100-150 ,
andwff-4-100-500 . SampleCount comes close to the true
counts within minutes, whileCachet takes up to 3 hours.
ApproxCount again under-estimates the counts.

Our third domain involves the problem of counting the
number of normalized Latin squares of a given order. A nor-
malized Latin square is a Latin square with the first row and
column fixed. The exact counts for these formulas are known
up to order 11. We see thatSampleCount scales nicely as
n increases, giving good bounds in a relatively small amount
of time. We used averaging over buckets of size two for bet-
ter bounds (cf. Section 5). BothRelsat andCachet con-
sistently time out with partial or no counts. Interestingly,
ApproxCount over-estimates the counts by several orders of
magnitude for the harder formulas whose true count is known.

Our final domain, Langford’s problem, is parameterized
by two values,k and n. In our instances,k = 2 and the
following problem is encoded: produce a sequenceS of
length 2n such that for eachi ∈ {1,2, . . . ,n}, i appears twice
in Sand the two occurrences ofi are exactlyi apart from each
other. This problem is satisfiable only ifn is 0 or 3 modulo
4. We see thatSampleCount , with buckets of size 3, scales
well asn increases, quickly giving good lower-bounds on the
true count (which is known for some of our instances, cf.
http://www.lclark.edu/˜miller/langford.html).
Again, ApproxCount over-estimates the counts by many
orders of magnitude, whileRelsat and Cachet produce
significant under-counts in 12 hours of CPU time.

In Table 2, we compare the performance ofSampleCount
with an XOR-streamlining based model counting method that
we recently proposed, calledMBound [Gomeset al., 2006].
These two approaches are very different in spirit.MBound
was designed for challenging combinatorial problems for
which even finding a single solution is often computation-
ally difficult. SampleCount , on the other hand, is targeted
towards problems for which multiple solutions can be repeat-

edly sampled efficiently. WhileMBound adds randomly cho-
sen “XOR” constraints to the formula, potentially making it
harder for SAT solvers,SampleCount adaptively eliminates
variables, simplifying the formula.SampleCount has fewer
parameters thanMBound and is easier to use in practice. As
we will see, on formulas where enough samples can be ob-
tained easily,SampleCount outperformsMBound. However,
when it is hard to find samples,MBound wins. This shows
that the two techniques are complementary.

All formulas considered for the comparison in Table 2 are
beyond the reach of current exact model counting methods,
and are also challenging forApproxCount (see[Gomeset
al., 2006] for details). We see that on both the Ramsey and
the clique coloring problems,SampleCount provides much
stronger lower-bounds thanMBound (at 99% confidence for
both approaches). For the Schur problems,SampleCount
dominates on the easier instance, but is unable to sample so-
lutions at all for the harder instance.

Finally, we demonstrate that although in expectation accu-
rate model counts are still obtained even when samples are
not used in the form of a guiding heuristic, techniques based
on randomly selecting and fixing variables can suffer from a
highly undesirable heavy-tail effect. Consider the following
settings forSampleCount : α = 0, t = 1, and an exact counter
is called only when all variables are fixed (so that it returns
either 0, inconsistency, or 1 as the residual count). We use
two variations of this, the first where variables are selected
at random and the second where sampling is used to select
variables likely to be more balanced.

Figure 1 shows the result on the Latin square formula
ls7-normalized . It plots thecumulative averageof the
number of solutions obtained using the two variants over
1,800 independent runs. The values plotted for runi are the
average of the firsti model counts for the two variants, respec-
tively. Theoretically, both of these cumulative averages must
converge to the true count for this formula, 1.69×107 (shown
as a horizontal line), after sufficiently many runs. It is clear
from the figure that when balanced variables are used even
by considering only 20 solution samples, the obtained model
count approaches the true count significantly faster than when
variables are selected at random. This fast convergence is key
to SampleCount ’s good performance in practice.

Note that in the random variable selection case, the model
count happened to start quite low in this experiment, keep-
ing the cumulative average down. The sudden upward jumps

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

Cu
m

ul
at

ive
 a

ve
ra

ge
 o

f s
ol

ut
io

n
co

un
t

Number of runs

Model counts for ls7-normalized.cnf

true count = 1.69e+07
with random variable selection (lower curve)

with balanced variable selection (upper curve)

Figure 1: Convergence to the true model count: random vari-
able selection vs. balanced variables using solution sampling

in the plot correspond to excessively high model counts that
compensate for all runs up till that point and bump up the
cumulative average. Here, these over-estimated counts are
2.1×109 in run 903 and 4.3×109 in run 1756, both over 100
times the true count. Extremes of this nature, and even more
drastic, occur fairly often when selecting variables at random.

5 ExtendingSampleCount with Buckets
For randomized algorithms, more computational resources
and more iterations typically result in improved behavior.
While this is true forSampleCount as well, it is not immedi-
ately obvious. In fact, the more iterations we perform (i.e., the
higher thet), theworselower-bound on the model count we
are likely to get becauseSampleCount takes the minimum
over theset iterations. This apparent paradox is resolved
by noting that ast grows, the minimum count may reduce
a bit but the probability of obtaining an incorrect bound, as
given by Theorem 1, converges exponentially to zero. Thus,
more iterations directly translate into a much higher confi-
dence level in the correctness ofSampleCount .

SampleCount can in fact be extended so that more iter-
ations translate into a trade-off between higher bounds and
higher confidence. The idea is to performT = bt iterations
and group these intot bucketsor groups of sizeb each. The
lower-bound in this extended version is obtained by comput-
ing the average of theb counts within each bucket and taking
the minimum over theset averages.

For b = 1, this bucket strategy is identical to
SampleCount . As b increases whilet remains unchanged,
we are likely to get lower-bounds even closer to the true
count. To see this, fixα = 0 so that the count obtained in
each iteration is a random variable whose expected value is
precisely the true count. Over different iterations, this count
varies from its expected value, lowering the value of the
minimum over all counts. By taking averages over several it-
erations within a bucket, we stabilize the individual count for
each bucket, and the minimum over these stabilized counts
increases. One can show that the correctness guarantee for
this bucket strategy is exactly the same as Theorem 1. We
leave experimental evaluation for a full version of the paper.

6 Conclusion
We presentedSampleCount , a new method for model count-
ing which capitalizes on the ability to efficiently draw (pos-
sibly biased) samples from the solution space of problems
using SAT solvers. A key feature of this approach is that
it gives probabilistic correctness guarantees on the obtained
bounds on the solution counts without assuming anything at
all about the quality (i.e., uniformity) of the sampling method
used. In practice,SampleCount provides very good lower-
bounds on the model counts of computationally challenging
problems, and scales well as problem complexity increases.

References
[Bayardo Jr. and Pehoushek, 2000] R. J. Bayardo Jr. and J. D. Pe-

houshek. Counting models using connected components. In17th
AAAI, pg. 157–162, Austin, TX, Jul 2000.

[Darwiche, 2005] A. Darwiche. The quest for efficient probabilistic
inference, Jul 2005. Invited Talk, IJCAI-05.

[Eén and S̈orensson, 2005] N. Eén and N. S̈orensson. MiniSat: A
SAT solver with conflict-clause minimization. In8th SAT, St.
Andrews, U.K., Jun 2005. Poster.

[Gomeset al., 2006] C. P. Gomes, A. Sabharwal, and B. Selman.
Model counting: A new strategy for obtaining good bounds. In
21th AAAI, pg. 54–61, Boston, MA, Jul 2006.

[Jerrumet al., 1986] M. R. Jerrum, L. G. Valiant, and V. V. Vazi-
rani. Random generation of combinatorial structures from a uni-
form distribution.Theoretical Comput. Sci., 43:169–188, 1986.

[Kilby et al., 2006] P. Kilby, J. Slaney, S. Thiébaux, and T. Walsh.
Estimating search tree size. In21th AAAI, pg. 1014–1019,
Boston, MA, Jul 2006.

[Kirkpatrick et al., 1983] S. Kirkpatrick, D. Gelatt Jr., and M. Vec-
chi. Optimization by simuleated annealing. Science,
220(4598):671–680, 1983.

[Littmanet al., 2001] M. L. Littman, S. M. Majercik, and T. Pitassi.
Stochastic Boolean satisfiability.J. Auto. Reas., 27(3):251–296,
2001.

[Madras, 2002] N. Madras. Lectures on Monte Carlo methods. In
Field Institute Monographs, volume 16. Amer. Math. Soc., 2002.

[McAllesteret al., 1997] D. A. McAllester, B. Selman, and
H. Kautz. Evidence for invariants in local search. InAAAI/IAAI,
pg. 321–326, Providence, RI, Jul 1997.

[Metropoliset al., 1953] N. Metropolis, A. Rosenbluth, M. Rosen-
bluth, A. Teller, and E. Teller. Equations of state calculations by
fast computing machines.J. Chem. Phy., 21:1087–1092, 1953.

[Park, 2002] J. D. Park. MAP complexity results and approxima-
tion methods. In18th UAI, pg. 388–396, Edmonton, Canada,
Aug 2002.

[Roth, 1996] D. Roth. On the hardness of approximate reasoning.
J. AI, 82(1-2):273–302, 1996.

[Sanget al., 2004] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and
T. Pitassi. Combining component caching and clause learning for
effective model counting. In7th SAT, Vancouver, B.C., Canada,
May 2004. Online Proceedings.

[Sanget al., 2005] T. Sang, P. Beame, and H. A. Kautz. Performing
Bayesian inference by weighted model counting. In20th AAAI,
pg. 475–482, Pittsburgh, PA, Jul 2005.

[Toda, 1989] S. Toda. On the computational power of PP and⊕P.
In 30th FOCS, pg. 514–519, 1989.

[Wei and Selman, 2005] W. Wei and B. Selman. A new approach to
model counting. In8th SAT, volume 3569 ofLNCS, pg. 324–339,
St. Andrews, U.K., Jun 2005.

[Wei et al., 2004] W. Wei, J. Erenrich, and B. Selman. Towards
efficient sampling: Exploiting random walk strategies. In19th
AAAI, pg. 670–676, San Jose, CA, Jul 2004.

