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Abstract

We introduce a new technique for counting models
of Boolean satisfiability problems. Our approach
incorporates information obtained from sampling
the solution space. Unlike previous approaches, our
method does not require uniform or near-uniform
samples. It instead converts local search sampling
without any guarantees into very good bounds on
the model count with guarantees. We give a formal
analysis and provide experimental results showing

sample uniformly from the set of solutions, then one can use
samples to obtain a highly accurate count of the total num-
ber of solutiong. We will explain this strategy below. This
approach was exploited in the work @pproxCount [Wei

and Selman, 20Q5where a model sampling procedure called
SampleSat [Weiet al, 2004 was used to provide samples of
satisfying assignments of the underlying SAT instance. In this
setting, the counting is only approximate — with no guaran-
tees on the accuracy — becawgenpleSat does in general
not sample purely uniformly; it uses Markov Chain Monte
Carlo (MCMC) methoddMadras, 2002; Metropolist al,

the effectiveness of our approach. 1953; Kirkpatricket al, 1983, which often have exponential

(and thus impractical) mixing times. In fact, the main draw-

1 Introduction back of Jerrurret al's counting strategy is that for it to work

o well one needs (near-)uniform sampling, which is a very hard
Boolean satisfiability (SAT) solvers have been successfullyproblem in itself. Moreover, biased sampling can lead to ar-
applied in a range of domains, most prominently, in Al plan-pitrarily bad under- or over-estimates of the true count.
ning and hardware and software verification. In these appli- The key new insight of this paper is that, somewhat sur-
cations, the basic task is to decide whether a SAT encodingrisingly, using sampling with a modified strategy, one can
of the underlying problem domain is satisfiable or not. Givenget very good lower-bounds on the total model count, with
the tremendous progress in state of the art SAT solvers anfigh confidence guaranteasithout any requirement on the
their applications, researchers have become interested in pigality of the samplingWe will provide both a formal anal-
suing other questions concerning SAT encodings to furtheysis of our approach and experimental results demonstrating
extend the reach of SAT technology. For example, can ongs practical effectiveness.
randomly sample from the set of sat|sfy!ng 'aSS|gnr.nents? Or our strategy,SampleCount , provides provably (proba-
can one count the total number of satisfying assignmentsgjjisticy guaranteed lower-bounds on the model counts of

In bo_th a formal comple_xity theoretic sense as well as ingqgjean formulas using solution sampling. Interestingly, the
practice, these computational questions are much harder thai e ciess of the obtained bounds holds even when the sam-
just” determining sat|sf|a_b|llty versus unsatlsﬂabl_llty o_f @ pling method used is arbitrarily bad; only the quality of the
formula. Formally, counting th_e number of solutions IS apounds may go down (i.e., the bound may get farther away
#P-complete problem, making it complete for a complexityqm the true count on the lower side). Thus, our strategy re-
class at least as hard as the polynomial-time hierarchy (Pkains sound even when a heuristic-based practical solution
[Toda, 1989 On the positive side, efficient methods for sampling method is used instead of a true sampler.

sampling and counting would open up a wide range of new .

I ; . : - SampleCount can also be viewed as a way of extend-
appllca_tlons, e.g. involving various forr_ns of probabilistic ing thep reach of exact model counting proced};res such as
reasoningDarwiche, 2005; Roth, 1996; Littmaat al, 2001; Relsat [Bayardo Jr. and Pehoushek, 20amd Cac,het
Park, 2002; Sangt al, 2003. [Sanget al, 2004.2 More specifically,SampleCount first

ta é:(rsuforlrﬁ nggt?sr agg rmj%de{/gﬁgrr]\ttmg n%revgfi?ﬂ%g%ateduses sampling to select a set of variables of the formula to
: P ' " o ; fix. Once a sufficient number of variables have been set,
showed that for many combinatorial problems, if one can

*Research supported by Intelligent Information Systems Insti- 2Conversely, one can also design a uniform solution sampler us-
tute (11SI), Cornell University (AFOSR grant F49620-01-1-0076) ing a solution counter.
and DARPA (REAL grant FA8750-04-2-0216). 3These exact counters also provide a lower-bound on the true

IThe class NP is the first of an infinite sequence of levels in PH.model count if they are aborted before terminating.



the remaining formula can be counted using an exact modehte counts in expectation. The key strengtBahpleCount
counter. From the exact residual model count and the nunis that it works no matter how biased the model sampling is,
ber of fixed variables, we can then obtain a lower-bound orthereby circumventing the main drawback of approach (a).
the total number of models. As our experiments will show,Instead of using the sampler to select the variable setting and
these bounds can be surprisingly close to optimal. Moreovegompute a multiplier, we use the sampler only as a heuristic
on many problem classes our method scales very well. Tto determinein what orderto set the variables. In particu-
mention just one example, we consider a circuit synthesis fortar, we use the sampler to select a variable whose positive
mula from the literature, calle8bitadd _32.cnf . This for-  and negative setting occurs most balanced in our set of sam-
mula can be solved quite easily with a local search style SAples (ties are broken randomly). Note that such a variable
solver, such agvalksat [McAllesteret al, 1994. However,  will have the highest possible multiplier (closest to 2) in the
it is out of reach for all but the most recent DPLL style solversSampleCount setting discussed above. Informally, setting
(Minisat  [Eén and ®rensson, 2003akes almost two hours the most balanced variable will divide the solution space most
to find a single solution). Consequently, it is completely outevenly (compared to setting one of the other variables). Of
of reach of exact model counters based on DPLL. The origicourse, as we noted, our sampler may be heavily biased and
nal formula has nearly 9,000 variableSampleCount sets  we therefore cannot really rely on the observed ratio between
around 3,000 variables in around 30 minutes, with the repositive and negative settings of a variable. Interestingly, we
maining formula solved byachet in under two minutes. can simply set the variable to a randomly selected truth value
The overall lower-bound on the model count — with 99% and use the multiplier 2. This strategy will still give — in ex-
confidence — thus obtained is an astonishing®3models.  pectation — the true model count. A simple example shows
We see that the formula has a remarkable number of truth asvhy this is so. Consider our formula above and assunoe-
signments, yet exact counters cannot find any models aftaurs most balanced in our sample. Let the model couRt'of

over 12 hours of run time. be 2V /3 and ofF ~ beM /3. If we select with probability 1/2
) to setx; to True, we obtain a total model count ok2M /3,
1.1 Main Idea i.e., too high; but, with probability 1/2, we will set the vari-

To provide the reader with an intuitive understanding of ourable to False, obtaining a total count o /3, i.e., too low.
approach, we first give a high-level description of how sam-Overall, our expected (average) count will be exattly
pling can be used to count. We will then discuss how this can Technically, the expected total model count is correct be-
be made to work well in practice. cause of the linearity of expectation. However, we also
(a) From Sampling to Countirlgerrumet al, 1984. Con-  see that we may have significant variance between specific
sider a Boolean formul& with M satisfying assignments. counts, especially since we are setting a series of variables
Assuming we could sample these satisfying assignments uni a row (obtaining a sequence of multipliers of 2), until we
formly at random, we can measure the fraction of all modeldave a simplified formula that can be counted exactly. In fact,
that havex; set to TrueM™, by taking the ratio of the num- in practice, the total counts distributions (over different runs)
ber of assignments in the sample that havset to True over ~ are often heavy-taile{Kilby et al, 2004. To mitigate the
the sample size. This fraction will converge with increasingfluctuations between runs, we use our samples to select the
sample size to the true fraction of models withset posi- best variables to set next. Clearly, a good heuristic would be
tively, y = M* /M. (For now, assume that> 0.) It follows  to set such “balanced” variables first. We u&ampleSat
immediately thaM = (1/y)M*. We will call 1/y the “mul-  to get guidance on finding such balanced variables. The ran-
tiplier” (> 0). We have thus reduced the problem of countingdom value setting of the selected variable leads to an expected
the models of to counting the models of a simpler formula, model count that is equal to the actual model count of the
F*. We can recursively repeat the process, leading to a séormula. We show how this property can be exploited us-
ries of multipliers, until all variables are assigned or until weing Markov’s inequality to obtain lower-bounds on the total
can count the number of models of the remaining formulagnodel count with predefined confidence guarantees. These
with an exact counter. For robustness, one usually sets sguarantees can be made arbitrarily strong by repeated itera-
lected variable to the truth value that occurs more often irfions of the process.

the sample. This also avoids the problem of hayirg0 and We further boost the effectiveness of our approach by using
therefore an infinite multiplier. (Note that the more frequently variable “equivalence” when no single variable appears suf-
occurring truth value gives a multiplier of at most 2.) ficiently balanced in the sampled solutions. For instance, if

(b) ApproxCount [Wei and Selman, 2005 In  variablesx; andx, occur with the same polarity (either both
ApproxCount , the above strategy is made practical by positive or both negative) in nearly half the sampled solutions
using a SAT solution sampling method callédmpleSat and with a different polarity in the remaining, we randomly
[Wei et al, 2004. Unfortunately, there are no guaranteesreplacex; with eitherx; or X, and simplify. This turns out to
on the uniformity of the samples frorBampleSat . Al- have the same positive effect as setting a single variable, but is
though the counts obtained can be surprisingly close to theore advantageous when no single variable is well balanced.
true model counts, one can also observe cases where theOur experimental results demonstrate that in practice,
method significantly over-estimates or under-estimates. OusampleCount provides surprisingly good lower-bounds —
experimental results will confirm this behavior. with high confidence and within minutes — on the model

(c) SampleCount . Our approach presented here uses aounts of many problems which are completely out of reach
probabilistic modification of strategy (a) to obtain true accu-of current exact counting methods.



2 Preliminaries Params integers, z; reala > 0
" . Input : A CNF formulaF overn variables
LetV be a set of propositional (Boolean) variables that take output : A lower-bound on the model count &t

value in the se{0,1}. We think of 1 as True and 0 as False.  begin

LetF be a propositional formula ovét. A solution or model minCount— 2"
of F (also referred to as a satisfying assignmentRdiis a for iteration« 1tot do
0-1 assignment to all variables ¥hsuch that evaluates to S:OF
1. Propositional Satisfiabilitypr SAT is the decision problem . )
of determining whetheFf has any models. This is the canon- untllsibsef%mes feasible f@ixactModelCount - do
ical NP-complete problem. In practice, one is also interested S« SampleSolutions(  G,2)
in finding a model, if there exists on€ropositional Model u < GetMostBalancedVar( 9
Countingis the problem of computing the number of models (v,w) «— GetMostBalancedVarPair( S
for F. This is the canonical #P-complete problem. It is the- r — a random value chosen uniformly froff,1}
oretically believed to be significantly harder than SAT, and if balancéu) > balancév,w) then
also turns out to be so in practice. L setutorinG

The correctness guarantee for our algorithm relies on ba- else.f _oth | thvin G
sic concepts from probability theory. Let andY be two L Ielggreplae(:ré/\;(\e/ﬁtﬁcﬂe\l/vi\r,]WG vin
discrete random variables. Tke&pected valuef X, denoted simplify(  G)
E[X], equalsy,xPr[X = x]. Theconditional expectationf - <o
X givenY, denotedE[X | Y], is a function ofY defined as gountjz . -CExacéwodeICount( ©)
follows: E[X | Y =y] = T,xPr[X = x| Y = y]. We will need minGountcount
the following two results whose proof may be found in stan- — _

return Lower-bound:minCount

dard texts on probability theory. end

Proposition 1 (The Law of Total Expectation). For any dis- Algorithm 1: SampleCount

crete random variables X and E[X] =E[E[X | Y]].

Proposition 2 (Markov's inequality). For any random vari- selects a variable pajw,w) whose same and different occur-

able X,Pr[X > KE[X]] < 1/k. rences are as balanced as possible. Here “same occurrence
’ in a solution means that either batlandw appear positively

. . . . or they both appear negatively. Ufis at least as balanced
3 Model Counting Using Solution Sampling as (V,w), SampleCount uniformly randomly setsi to O or

This section describes our sample-based model counting ak In G- Otherwise, it uniformly randomly replaces with
gorithm, SampleCount  (see Algorithm 1). The algorithm €itherv or -, forcing a literal equivalence. Now is sim-

has three parameters:the number of iterationg; the num- plified by unit propagating this variable restriction, it is tested
ber of samples for each variable setting; andthe “slack”  adain for tlhe p035|b|llty_qf exact counting, and, if necessary,
factor, which is a positive real number. The input is a formulath® sampling and simplification process is repeated. @hce
F overnvariables. The output is a lower-bound on the modelcomes within the range of the exact counting subroutine after
count of F. SampleCount is a randomized algorithm with S Simplification steps, the number 001: remaining model&in

a high probability of success. We will shortly formalize its 1S computed. This, multiplied with®2%, is the final count for
success probability quantitatively as Theorem 1. this iteration. Aftert iterations, the minimum of these counts

SampleCount is formally stated as Algorithm 1 and de- IS réported as the lower-bound. .
scribed below. SampleCount performst iterations onF By setting variables and equivalences, the original formula

and finally reports the minimum of the counts obtained in!S réduced in size. By doing this repeatedly, we eventually
these iterations. Within an iteration, it makes a capy 'each aformula that can be counted exactympleCount

of F and, as long a$ is too hard to be solved by an provides a practically effective way of selecting the variables
exact model counting subroutifiedoes the following. It to set or the equivalence to assert. Each time it looks for the
calls SampleSolutions(  G,2) to sample up t@ solutions most evenly way to divide the set of remaining so_lutlons. By
of G; if the sampling subroutine times out, it may re- picking one of the two subsets randomly, we obtain real guar-
turn ,fewer thanz sample$. Call this set of éolution§ antees (see Section 3.1) and the formula is eventually suffi-
GetMostBalancedvar( S selects a variabla of G whose ciently simplified to enable an exact count. The sampling is

positive and negative occurrencesSiare as balanced as pos- US€d t0 attempt an as evenly as possible division of the solu-
sible, i.e., as close t{§/2 each as possible. Ties are bro- tion space. The better this works, the better our lower-bound.

ken randomly. SimilarlyGetMostBalancedVarPair( S But we d_on’t nged any guarantees on the sampling quality;
we will still obtain a valid, non-trivial lower-bound.

4This is decided based on the number of remaining variable? 1 Correctness Analysis oBampleCount
or other natural heuristics. A common strategy is to run an exact

counter for a pre-defined amount of tif\&ei and Selman, 2005 We now analyzesampleCount as a randomized algorithm
5Even when no samples are found, the procedure can continudNd show that the probability that it provides an incorrect

by selecting a random variable. Of course, the quality of the boundower-bound on an input formula decreases exponentially to

obtained will suffer. zero with the number of iterations,and the slack factory.



Somewhat surprisingly, as we discuss below, the bound offihis implies that the conditional expectationafunt given
the error probability we obtain is independent of the numbess is E[count| g = E[25 %S Y5 |5 = 25 *S,E[Ys |9 =
z of samples used and thgpiality of the samples (i.e., how 25 %Y PriYo =1|5=25%y,25=2"%y,1. SinceF
uniformly they are distributed in the solution space). has 2° solutions, we havéd [count| § = 25— Applying

Theorem 1. For parameters(t,z ), the lower-bound re- the law of to;‘f' expectationfi [counf = E[E[count| s|] =
turned bySampleCount is correct with probability at least E [25 %] =25 ¢,
1— 2=* independent of the number and quality of solution Finally, using Markov’s inequality, F{count> 25*} <

samples. E[count /25 = 2-%. This proves that the error probability in
any single iteration is at most 2 (in fact, strictly less than
Proof. Let 2,5 > 0, be the true model count ¢f. Sup- 2-%). From our argument at the beginning of this proof, the
pose SampleCount  returns an incorrect lower-bound, i.e., gyerall probability of error aftet iterations is less than 2.
minCount> 2% . This implies thattount> 2% in all of the  Since we did not use any property of the number or quality of

t iterations. We will show that this happens in any single iter-samples, the error bound holds independent of these. ]
ation with probability at most2*. By probabilistic indepen-

dence of the iterations, the overall error probability would ~ We end with a discussion of the effect of the number of
then be at most2*, proving the theorem. samplesz, on SampleCount . It is natural to expect more
Fix any iteration ofSampleCount . When executing the samples to lead to a “better” bound at the cost of a higher
algorithm, as variables dob are fixed or replaced with an- runtime. Note, however, thaidoes not factor into our formal
other variable within the inneugtil-do) loop, G is repeat-  result above. This is, in fact, one of the key points of this
edly simplified and the number of variables in it is reduced.paper, that we provide guaranteed bounds without making
For the analysis, it is simpler to consider a closely related forany assumptions whatsoever on the quality of the sampling
mulap(G) over alln variables. At the start of the iteration, process or the structure of the formula. Without any such
p(G) = G = F. However, within the inner loop, instead of assumptions, there is no reason for more samples to guide
fixing a variableu to 0 or 1 or replacingv with vor -vand  SampleCount towards a better lower-bound. In the worst
simplifying (as we did forG), we add additional constraints case, a highly biased sampler could output the same small set
u=0,u=1,w=v, orw=—v, respectively, tp(G). Clearly,  of solutions over and over again, making more samples futile.
at any point during the execution 8mpleCount , the solu- However, in practice, we do gain from any sampling pro-
tions of p(G) are isomorphic to the solutions Gf every so-  cess that is not totally biased. It guides us towards balanced
lution of G uniquely extends to a solution pfG) and every  variables whose true multipliers are close to 2, which reduces
solution ofp(G) restricted to the variables @ is a solution  probabilistic fluctuations arising from randomly fixing the se-
of G. In particular, the number of solutions Gfis always the  lected variables. Indeed, under weak uniformity-related as-
same as that gf(G). Further, every solution gf(G) is also  sumptions on the sampler and assuming the formula has a
a solution ofF. mix of balanced and imbalanced variables, a higher number
Let G denote the final formul& on which the subroutine of samples will reduce the variation in the lower-bound re-
ExactModelCount( G) is applied afters variable restric- ported bySampleCount over several runs.
tions. Note thas itself is a random variable whose value is
determined by which variables are restricted to which randonsl  Experimental Results
value and how that propagates to simpl#yso that its resid-
ual models may be counted exactly. Consider the variant

G defined on alh variablesp(G). p(G) is a random formula T

de}lermhined byfbl(alnd th? rar;?o_m b‘tS us_ed in thg iteratiqnblFi- sion 2.00 with countingCachet version 1.2 extended to re-
nally, the variableountfor this iteration is a random variable port partial counts, andpproxCount version 1.2. Both

whose value is 2 times the model count qf (G). We are  sampleCount andApproxCount  internally useSampleSat

interested in the behavior ebuntas a random variable. for obtaining solution samplesSampleCount was created
Recall that every solution gf(G) is also a solution oF. by modifyingApproxCount  to ignore its sample-based mul-

For every solutiono of F, let Y5 be an indicator random tipliers, fix the most balanced variables at random, and ana-

e conducted experiments on a cluster of 3.8 GHz Intel
eon machines with 2GB memory per node running Linux.
he model counters used wesampleCount , Relsat ver-

variable which is 1 iffo is a solution ofG. Then,count= lyze equivalences, and by creating a wrapper to perform mul-
25°%5 5 Ys. We will compute the expected valueasuntus- tiple iterations {) with the specified slack factar.
ing the law of total expectatiorE [counf = E [E [count| g]]. In all our experiments wittsampleCount , oo andt were

Fix s. For eacho, Pr[Ys; = 1| § equals the probability that set so thatot = 7, giving a correctness confidence of-1
each of thesvariable restrictions within the inner loop is con- 27 = 99% (see Theorem 1} ranged from 1 to 7 so as to
sistent witho, i.e., if o hasu = 0 thenuis not restricted to 1, keep the runtimes adampleCount well below two hours,
if o hasv=w thenw is not replaced with-v, etc. Because while the other model counters were allowed a full 12 hours.
of the uniformly random value used in the restrictions, this The number of samples per variable settingyvas typically
happens with probability exactfy/, in each restriction. Note chosen to be 20. Our results demonstrate SaaipleCount
that thes restrictions set or replacedifferent variables, and is quite robust even with so few samples. Of course, it can
are therefore probabilistically independent with respect to bebe made to produce even better results with more samples
ing consistent witho. Consequently, BY; =1|g =275, of better quality, or by using a “buckets” strategy that we will



Table 1: Performance &ampleCount compared with exact counters and with an approximate counter without guarantees.

SampleCount Exact Counters ApproxCount
Instance  True Counu (99% confiden(;e) Relsat ' Cachet . (without guarantges)
Models Time Models Time Models Time Models Time

CIRCUIT SYNTH.
2bitmax6 21x10%9 || >24x10%8  29sec|| 21x10%9 66sec| 21x10%9 2sec| ~56x10°8 8 sec
3bitadd32  — >59x101339 32min | — 12hrs| — 12hrs|| ~7.3x 10941 43 min

RANDOM k-CNF
wif-3-3.5 14x10M || >16x 1013 4 min 14x 1014  2nrs| 14x 104 7min| ~84x 1013  11sec
wif-3-1.5 18x10%1 || >1.6x1020  4min || >40x1017 12hrs| 1.8x10%1  3hrs|| ~9.3x 1018 8 sec
Wff-4-5.0 — >80x10®  2min | >18x102 12hrs| >1.0x10'% 12hrs| ~42x101°  11sec

LATIN SQUARE
Is8-norm  54x 1011 || >31x 1010  19min || >17x108  12hrs| >1.9x107 12hrs| ~2.7x 102 5 sec
Is9-norm  38x 1017 || >1.4x10® 32min | >7.0x10"  12hrs| >1.7x10" 12hrs| ~95x1017  11sec
Is10-norm  76x 1024 || >27x 10?1 49min || >61x107 12hrs| >24x 10" 12hrs| ~21x 1077  22sec
Isil-norm 54x1033 || >12x1030  69min || >47x107 12hrs| >12x107 12hrs| ~51x10*0  1min
Is12-norm — >6.9x 103 50 min > 4.6 x 107 12hrs| > 15x 107 12hrs| ~1.8x10°1 8 min
Is13-norm  — >30x10%9  67min| >21x107 12hrs| >20x107 12hrs| ~41x 1004  12min
Isl4-norm  — >90x10%0  44min| >26x107 12hrs| >15x107 12hrs|| ~23x10%9 18 min
Is15-norm  — >11x10'3 S6min| — 12hrs| >91x10  12hrs| ~56x 10115  2hrs
Is16-norm — > 6.0 x 108° 68 min — 12hrs| >1.0x 107 12 hrs| ~54x 10123  25hrs
LANGFORD PROBS.
lang-2-12 10x10° || >43x103 32min|| 10x10° 15min| 10x10°  4hrs| ~37x10°  1.5min
lang-2-15 30x 10’ || >1.0x100  60min || >1.8x10° 12hrs| >11x10° 12hrs| ~74x 1010 23 min
lang-2-16 2x108 || >1.0x10  65min || >1.8x10° 12hrs| >1.0x10° 12hrs| ~63x1010  6min
lang-2-19 21x 101! | >33%x10°  62min | >24x10° 12hrs| >11x10° 12hrs| ~12x 10  12min
lang2-20 26x10'2 || >58x10°  54min || >15x10° 12hrs| >10x10° 12hrs| ~9.9x10° 24 min
lang-2-23  37x 1010 || >16x 1011  85min || >12x10° 12hrs| >84x10% 12hrs| ~13x 1020  75min
lang-2-24 ~ — >41x1013  80min | >41x10° 12hrs| — 12hrs| ~1.3x10%2  15hrs
lang-2-27  — >52x 10 111min| >11x10* 12hrs| — 12 hrs|| ~1.7x 1033 3hrs
lang-2-28 ~ — >40x10M% 117min| >11x10* 12hrs| — 12 hrs|| ~2.3x 1026 2hrs

briefly outline in Section 5. On the other haigproxCount on ApproxCount even though the comparison is not really
often significantly under- or over-estimated the number ofmeaningful asApproxCount does not provide any correct-
solutions with 20 samples. We therefore allowed it aroundhess guarantees. Indeed, it, for example, under-estimates the
100 samples per variable setting in all our runs, except focount by at least 198 on 3bitadd _32, and over-estimates

the very easy instances (circuit synthesis and random foy 10’ (with an increasing trend) on the Latin square for-
mulas) where it used 1000 samples. Other parameters afiulas. (Of course, there are also classes of formulas where
ApproxCount were set so as to obtain the desired number ofApproxCount appears to count quite accurately when given
samples in a reasonable amount of time fidampleSat . A good quality samples.) We discuss the results in detail below.
local search “cutoff” between 2,000 and 20,000 was sufficient  The circuit synthesis formulas are for finding minimal size

for most problems, while the Langford instances required &ircuits for a given Boolean function. These are known to
cutoff of 100,000 to obtain enough samples. Finally, bothquickly become very difficult for DPLL style procedures.
SampleCount and ApproxCount were set to callCachet  The instancebitmax _6 is still easy for exact model count-
when typlcally between 50 and 350 variables remained Unseﬁqg procedureS, an&ammecount also gets a very good
Table 1 summarizes our main results, where we evaluat®wer-bound quickly. 3bitadd _32, on the other hand, was
our approach on formulas from four domains: circuit syn-only recently solved for a single solution usiniSat in
thesis, randork-CNF, Latin square, and Langford problems. about 6,000 seconds3bitadd _32 is certainly far beyond
We see thatSampleCount scales well with problem size the reach of exact counting. The total solution count for
and provides good high-confidence lower-bounds close to ththis formula is astonishingSampleCount reports a lower-
true counts, in most cases within an hour. It clearly out-bound of 59 x 10'33%  Note that the formula has close to
performs exact counters, which almost always time out afte®,000 variables and therefore the solution set is still an expo-
12 hours, providing counts that are several orders of magnirentially small fraction of the total number of assignments.
tude below those oBampleCount . We also report results SampleCount sets around 3,000 variables in around 30 min-



Table 2: Comparison ddampleCount with MBound, both with 99% confidence.

SampleCount MBound Relsat Cachet
Models Time Models Time Models Models Time

Ramsey-20-4-5 | >3.3x103° 35min | >12x1030 23min| >91x10° >90x101 12hrs
Ramsey-23-4-5 | >14x1031 53min | >18x10!° 25min| >68x10° >84x10° 12hrs
Schur-5-100 | >1.3x107  20min | >28x10% 25min| >81x10% >10x10% 12hrs
Schur-5-140 — 12 hrs | >6.7x 107 1hr — — 12 hrs
fclgcolor-18-14-11| >3.9x10°0 35min | >21x10%0  28sec| >12x1031 >24x1033 12hrs
fclgcolor-20-15-12| >3.1x10°7  6min | >22x10%  2min | >9.0x1027 >86x1038 12hrs

Instance

utes, with the remaining formula solved I@achet in un-  edly sampled efficiently. Whil®Bound adds randomly cho-
der two minutes. FinallyApproxCount seriously under- sen “XOR” constraints to the formula, potentially making it
estimates the true count, reporting onlg & 10°4%, harder for SAT solverssampleCount adaptively eliminates
Our random formulas are selected from the undervariables, simplifying the formulasampleCount has fewer
constrained area, i.e., with clause-to-variable ratios below thearameters thamBound and is easier to use in practice. As
SAT-UNSAT threshold. As noted by Bayardo Jr. and Pe-we will see, on formulas where enough samples can be ob-
houshek [2000], such formulas have a large number of agained easilySampleCount outperformsviBound. However,
signments and are much harder to count than formulas of th&hen it is hard to find samplesjBound wins. This shows
same size near the phase transition. The table gives resufiat the two techniques are complementary.
on three such formulasiff-3-150-525  , wff-3-100-150 All formulas considered for the comparison in Table 2 are
andwff-4-100-500 . SampleCount comes close to the true beyond the reach of current exact model counting methods,
counts within minutes, whileachet takes up to 3 hours. and are also challenging féypproxCount (see[Gomeset
ApproxCount again under-estimates the counts. al., 2004 for details). We see that on both the Ramsey and
Our third domain involves the problem of counting the the clique coloring problemsampleCount provides much
number of normalized Latin squares of a given order. A norstronger lower-bounds thaviBound (at 99% confidence for
malized Latin square is a Latin square with the first row anddoth approaches). For the Schur problesampleCount
column fixed. The exact counts for these formulas are knowflominates on the easier instance, but is unable to sample so-
up to order 11. We see thaampleCount scales nicely as lutions at all for the harder instance.

nincreases, giving good bounds in a relatively small amount Finally, we demonstrate that although in expectation accu-
of time. We used averaging over buckets of size two for betrate model counts are still obtained even when samples are
ter bounds (cf. Section 5). BotRelsat andCachet con-  not used in the form of a guiding heuristic, techniques based
sistently time out with partial or no counts. Interestingly, on randomly selecting and fixing variables can suffer from a
ApproxCount  over-estimates the counts by several orders ohjghly undesirable heavy-tail effect. Consider the following
magnitude for the harder formulas whose true count is knownsettings foiSampleCount : o =0,t = 1, and an exact counter
Our final domain, Langford’s problem, is parameterizedis called only when all variables are fixed (so that it returns
by two values,k andn. In our instancesk = 2 and the either 0, inconsistency, or 1 as the residual count). We use
following problem is encoded: produce a sequeicef  two variations of this, the first where variables are selected
length 2 such that for eache {1,2,...,n}, i appears twice at random and the second where sampling is used to select
in Sand the two occurrences bére exactlyi apart from each variables likely to be more balanced.
other. This problem is satisfiable onlyrifis O or 3 modulo Figure 1 shows the result on the Latin square formula
4. We see thasampleCount , with buckets of size 3, scales |s7-normalized . It plots thecumulative averagef the
well asnincreases, quickly giving good lower-bounds on thenumber of solutions obtained using the two variants over
true count (which is known for some of our instances, cf.1 800 independent runs. The values plotted forirare the
http://www.Iclark.edu/"miller/langford.html ). average of the firstmodel counts for the two variants, respec-
Again, ApproxCount over-estimates the counts by many tively. Theoretically, both of these cumulative averages must
orders of magnitude, whil®elsat and Cachet produce converge to the true count for this formulag@x 107 (shown
significant under-counts in 12 hours of CPU time. as a horizontal line), after sufficiently many runs. It is clear
In Table 2, we compare the performancesafpleCount from the figure that when balanced variables are used even
with an XOR-streamlining based model counting method thaby considering only 20 solution samples, the obtained model
we recently proposed, calledBound [Gomeset al., 2004. count approaches the true count significantly faster than when
These two approaches are very different in spifBound ~ Vvariables are selected at random. This fast convergence is key
was designed for challenging combinatorial problems forto SampleCount ’s good performance in practice.
which even finding a single solution is often computation- Note that in the random variable selection case, the model
ally difficult. SampleCount , on the other hand, is targeted count happened to start quite low in this experiment, keep-
towards problems for which multiple solutions can be repeating the cumulative average down. The sudden upward jumps
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"irue count = 1.696+07 ——— We presentedampleCount , a new method for model count-

¢ with random variable selection (lower curve) ing which capitalizes on the ability to efficiently draw (pos-
2.50+07 § Wil balanced variable selection (upper curve) 4 sibly biased) samples from the solution space of problems
using SAT solvers. A key feature of this approach is that
it gives probabilistic correctness guarantees on the obtained
bounds on the solution counts without assuming anything at
all about the quality (i.e., uniformity) of the sampling method
used. In practiceSampleCount provides very good lower-
bounds on the model counts of computationally challenging
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50406 | | problems, and scales well as problem complexity increases.
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