Using Recursive Decomposition to Construct
Elimination Orders, Jointrees, and Dtrees

Adnan Darwiche and Mark Hopkins

Computer Science Department
University of California
Los Angeles, CA 90095
{darwiche,mhopkins}@cs.ucla.edu

Abstract. Darwiche has recently proposed a graphical model for driv-
ing conditioning algorithms, called a dtree, which specifies a recursive
decomposition of a directed acyclic graph (DAG) into its families. A
main property of a dtree is its width, and it was shown previously how
to convert a DAG elimination order of width w into a dtree of width < w.
The importance of this conversion is that any algorithm for construct-
ing low-width elimination orders can be directly used for constructing
low-width dtrees. We propose in this paper a more direct method for
constructing dtrees based on hypergraph partitioning. This new method
turns out to be quite competitive with existing methods in minimizing
width. We also present methods for converting a dtree of width w into
elimination orders and jointrees of no greater width. This leads to a new
class of algorithms for generating elimination orders and jointrees (via
recursive decomposition).

1 Introduction

Darwiche has recently proposed a graphical model, called a dtree, which specifies
a recursive decomposition of a directed acyclic graph (DAG) into its families. The
main application of dtrees is in driving a class of divide-and-conquer algorithms,
called recursive conditioning, which can be used for anyspace probabilistic and
logical reasoning [5, 3,4]. Formally, a dtree is a full binary tree with its leaves
corresponding to the DAG families (nodes and their parents). Figure 1 depicts
a DAG and two corresponding dtrees.

The quality of a dtree is measured by a number of parameters. The main
property of a dtree is its width. For example, if we have a belief network with n
variables, and if we can construct a dtree of width w for the network, then we can
answer probabilistic queries in O(nexp(w)) space and time. A dtree has other
important properties though. For example, if the height of a dtree is h, then we
can reason about the network in O(n) space and O(n exp(hw)) time. Therefore,
constructing dtrees with minimal width and height is quite important.

Existing methods for constructing dtrees for a DAG focus on initially con-
structing a good elimination order for the DAG. It was previously shown how
to convert an elimination order of width w for DAG G into a dtree of width

< w for the same DAG [5], implying that any algorithm for constructing low-
width elimination orders is immediately an algorithm for constructing low-width
dtrees. It was also shown that any dtree can be balanced in O(nlogn) time, giv-
ing it a O(logn) height, while only increasing its width by a constant factor [5].
Therefore, to construct a dtree for linear-space reasoning, one can compute an
elimination order of small width, convert it to a dtree of no greater width, and
then balance the dtree to minimize its height.

We report in this paper on a new method for constructing balanced dtrees.
The method is based on hypergraph partitioning, a well-studied problem with
applications to many areas, including VLSI design, efficient storage of databases
on disk, and data mining [10]—the goal here is to partition a hypergraph into
equally-sized parts, while minimizing the edges which cross from one part to
another. Specifically, we show how the process of constructing balanced dtrees
for a DAG can be reduced to the process of recursively partitioning a hypergraph
based on the DAG.

Although the proposed method does not directly attempt to minimize the
dtree width, our experimental results show that from a width standpoint, it gen-
erates dtrees that are competitive with those produced from elimination orders
based on the min-fill heuristic. Furthermore, the generated dtrees are superior
when considering other properties such as height.

A key point is that our algorithm for constructing dtrees has a much broader
applicability, since any algorithm for producing low-width dtrees is immediately
a good algorithm for producing low-width jointrees and elimination orders. It
was shown previously that any dtree for a DAG can be immediately converted
into a jointree for that DAG [5]. Therefore, our new method for constructing
dtrees is immediately a method for constructing jointrees with similar properties,
including width. We also show in this paper that each dtree of width w naturally
determines a partial elimination order. Moreover, each (total) elimination order
which is consistent with this partial order is guaranteed to have a width no
greater than w. The implication of these results is that any method for recursively
decomposing a DAG into a dtree can be used to produce elimination orders and
jointrees for that DAG, with interesting guarantees on their qualities.

This paper is structured as follows. We start in Section 2 by reviewing dtrees
and their applications. We then introduce the problem of hypergraph partition-
ing in Section 3, where we show how it can be used to obtain balanced dtrees.
We then show in Section 4 how to convert dtrees of a certain width into elimina-
tion orders and jointrees of no greater width. We next present our experimental
results in Section 5 and finally close with some concluding remarks in Section 6.

2 Dtrees

A dtreeis a full binary tree which induces a recursive decomposition on a directed
acyclic graph. A dtree is used to drive divide-and—conquer algorithms, such as
the algorithm of recursive conditioning for inference in Bayesian networks [5].
The following is the formal definition of a dtree.

A AB AC BCD CE A AB AC BCD CE

Fig. 1. A directed acyclic graph and two corresponding dtrees.

Definition 1. A dtree T for a DAG G is a full binary tree, the leaves of which

correspond to the families of G. Specifically, if t is a leaf node which corresponds
def

to family F', we have vars(t) = F.
Figure 1 depicts two dtrees for the DAG shown in the same figure. Examine
the first dtree. The top level specifies a partition of the DAG families into two
sets: {4, AB, AC} and {BCD,CE}. The left subtree specifies a partition of
families {4, AB, AC}, while the right subtree specifies a partition of families
{BCD,CE} (unique in this case).

We will use t; and t,- to denote the left child and right child of node ¢ in a dtree.
Following standard conventions on binary trees, we will often not distinguish
between a node and the dtree rooted at that node. Finally, for internal nodes t,
we define vars(t) as vars(t;) U vars(t,).

To partition a set of families X' into two independent sets X and Y., we
must delete enough DAG edges so that the families in X; and X will no longer
share variables. An edge is deleted by setting the node at its tail. Therefore, one
measure of dtree quality is how many DAG nodes we have to set in order to
induce the decomposition specified by the dtree.

Definition 2. [5] The cutset of internal node t in a diree, cutset(t), is defined as
vars(t!) Nvars(t") — acutset(t), where acutset(t) is the union of cutsets associated
with ancestors of t.

That is, the cutset of dtree node ¢ contains the DAG nodes which must be set
in order to remove any shared variables between the families under ¢; and those
under t,.

Figure 2 depicts Algorithm RC that uses a dtree for computing probabilities
with respect to a Bayesian network [5]. The main feature of the algorithm is
that it takes space which is linear in the network size. Here, we associate each
conditional probability table (CPT) with a leaf node ¢, where vars(t) are the
CPT variables. To compute the probability of evidence e, all we have to do is
record the instantiation e, and then call RC(t), where ¢ is the root of given dtree.

Algorithm RrRcC

RC(dtreenode t)
01. if ¢ is a leaf node,
02. then return lookup(t)
03. else float p<0

04. for each instantiation ¢ of uninstantiated variables in cutset(t) do
05. record instantiation c

06. pp+RC(t)RC(E")

07. un-record instantiation c

08. return p

Fig. 2. Pseudocode for linear-space recursive conditioning. lookup(t) returns the prob-
ability of the instantiation recorded on the CPT associated with leaf node ¢t.

As evidenced by Algorithm RC, the quality of a dtree is dictated by the size
of its cutsets since algorithms based on dtrees are exponential in the size of such
cutsets. The height of the dtree is also important. For example, Algorithm RC
takes O(nexp(hc)) time, where h is the dtree height, ¢ is the size of its largest
cutset, and n is the number of its nodes.!

There are other measures of dtree quality, which become relevant when one
is willing to use more space in order to reduce running time. In particular, one
can use the technique of memoization from dynamic programming to cache some
of the results of rC [5].

Definition 3. [5] The context of node t in o diree, context(t), is defined as
vars(t) N acutset(t).

Specifically, at each node ¢ in the dtree, one could cache the result of RC(t)
indexed by the instantiation of context(t). If another call is made to node ¢
under the same context instantiation, it can be retrieved from the cache instead
of invoking a recursive call. This memoization scheme will then require each
node ¢t in the dtree to maintain a cache of size exp(c), where c is the size of
context(t). The total space required is then O(nexp(w,)), where w, is the size
of the maximal context in the dtree (known as the contexrt width).
A final measure of dtree quality is its width:

Definition 4. [5] The cluster of node t in a dtree is defined as follows:

vars(t), if t is leaf;
cutset(t) U context(t), otherwise.

cluster(t) = {

The width of a dtree is defined as the size of its largest cluster minus 1.

If one can afford the space required by memoization, then one can reason in
O(nexp(w)) time and O(n exp(w,)) space, where w is the dtree width, w, is its

! The number of dtree nodes is always twice (minus one) the number of DAG nodes.

context width, and n is the number of its nodes. In general though, one can use
as much space as one can afford, while still being able to predict the average
running time under the chosen amount of space [5].

Therefore, if one will not use memoization, then one is interested in minimiz-
ing the height and cutsets of a dtree. But if memoization is to be used, then one
needs to minimize the width and context width of a dtree. If one is to use partial
memoization, then the situation is a bit more complicated especially that there is
a tension between the previous properties of a dtree. For example, the technique
proposed in [5] for balancing a dtree does that at the expense of increasing its
width and context width.

We discuss in Section 3 a different class of algorithms for constructing dtrees
based on hypergraph partitioning. This class of algorithms attempts to minimize
the height and cutsets of dtrees. Yet, we shall present experimental results in
Section 5 showing that it produces very competitive dtrees from the standpoint
of width and context width, at least when compared with dtrees constructed
based on elimination orders. Given that one can easily convert a dtree of width
w into an elimination order or jointree of width < w, the proposed method
has implications on the construction of elimination orders and jointrees. This is
discussed in Section 4.

3 Dtree Construction as Hypergraph Partitioning

Previous methods for constructing low-width dtrees have focused on using ex-
isting heuristics to generate low-width elimination orders, then converting these
elimination orders to dtrees [5]. An alternative approach is to generate the dtrees
directly. The technique we now present uses hypergraph partitioning as a tool
for directly generating low-width dtrees.

A hypergraph is a generalization of a graph, such that an edge is permitted to
connect an arbitrary number of vertices, rather than exactly two. The edges of a
hypergraph are referred to as hyperedges. The problem of hypergraph partitioning
is to find a way to split the vertices of a hypergraph into k approximately equal
parts, such that the number of hyperedges connecting vertices in different parts
is minimized [10].

The problem of hypergraph partitioning is well-studied, as it applies to many
fields, including VLSI design, efficient storage of databases on disk, and data
mining [10]. Since solving the problem optimally is at least NP-hard [8], much
energy has been devoted to developing approximation algorithms for hypergraph
partitioning. A paper by Alpert and Khang [1] surveys a variety of the approaches
taken to this problem.

For our purposes, we used hMeTiS, a hypergraph partitioning package dis-
tributed by the University of Minnesota [11]. Loosely speaking, hMeTiS col-
lapses vertices and hyperedges of the original hypergraph to produce a smaller,
aggregated hypergraph, then uses various specialized algorithms to partition the
smaller hypergraph. After doing this, it uses specialized algorithms to construct a
partition for the original, refined hypergraph using the partition for the smaller,

Fig. 3. (a) From a DAG to a hypergraph. (b) An example bipartitioning of the hyper-
graph into two subgraphs.

aggregated hypergraph. Experimental results have shown that the partitions pro-
duced by hMeTiS are consistently better than those produced by other popular
algorithms [11]. In addition, hMeTiS is between one and two orders of magnitude
faster than other algorithms [11]. One of the useful features of hMeTiS is that
the user can specify how balanced the partition will be. Concretely, the user can
specify that each part must contain no less than X% of the vertices.

Generating a dtree for a DAG using hypergraph partitioning is fairly straight-
forward. The first step is to express the DAG G as a hypergraph H:

— For each family F' in DAG G, we add a node N to H.
— For each variable V in DAG G, we add a hyperedge to H which connects all
nodes Nr such that V € F.

An example of this is depicted in Figure 3(a).

Notice that any full binary tree whose leaves correspond to the vertices of
H is a dtree for our DAG. This observation allows us to design a simple al-
gorithm using hypergraph partitioning to produce a dtree. Figure 4 shows the
pseudocode for this algorithm. Essentially, it partitions the hypergraph into two
sets of vertices, then recursively generates dtrees for each set, and finally com-
bines the resulting dtrees into a new dtree (whose left child is the dtree for the
first set, and whose right child is the dtree for the second set).

HCGR2BDT attempts to minimize the cutset at each node in the dtree. To see
this, observe that every time we partition the hypergraph H into H; and H,,
we attempt to minimize the number of hyperedges that span the partitions H,
and H,. By construction, these hyperedges correspond to DAG variables that
are shared by families (vertices) on both sides of the cut. Hence by attempting
to minimize the number of hyperedges that span our hypergraph cut, we are
actually attempting to minimize the number of variables that are shared by the
left and right subtrees of the dtree that we are producing! Notice that we do not
make any direct attempt to minimize the width of the dtree. However, we shall
see in Section 5 that local cutset minimization is actually a good heuristic for
developing low-width dtrees.

An advantage to this approach is that it also produces balanced dtrees, in the
sense that for any node in the dtree, the ratio of the number of leaves in its left
subtree to the number of leaves in its right subtree is bounded. This is a direct
consequence of the fact that hMeTiS computes balanced hypergraph partitions.

Algorithm HGR2BDT

HGR2BDT(hypergraph H)
01. dtreenode ¢
02. if H has only one vertex N,

03. then vars(t) < F

04. t; < NULL

05. t, < NULL

06. else partition H into two subgraphs H; and H,
07. t; < HGR2BDT(H;)

08. t, < HGR2BDT(H,)

09. vars(t) « vars(t;) U vars(t,)

10. return ¢

Fig. 4. Pseudocode for producing dtrees using hypergraph partitioning.

Fig. 5. Converting a dtree into an elimination order.

Thus the algorithm computes dtrees that have height of O(log n), where n is
the number of nodes in the given DAG.

4 From Dtrees to Elimination Orders and Jointrees

In this section, we discuss width-preserving transformations from dtrees to elim-
ination orders, and from dtrees to jointrees. The implication of such transforma-
tions is that any algorithm for constructing low-width dtrees is immediately an
algorithm for constructing low-width elimination orders and jointrees. We will
begin our discussion by reviewing the concept of an elimination order.

An elimination order of an undirected graph G is an ordering 7 (1), 7 (2),...
of the nodes in G. One of the simplest ways for defining the width w of order
m is constructively. Simply eliminate nodes 7 (1), (2),...,m(n) from G in that
order, connecting all neighbors of a node before eliminating it. The maximum
number of neighbors that any eliminated node has is then the width of order

7. The width of an elimination order with respect to a DAG G is defined as
its width with respect to the moral graph of G-that is, the graph which results
from connecting all parents of each node, and then dropping the directionality
of edges.

Elimination orders are the basis of an important class of algorithms, known
as variable elimination algorithms [6, 14]. They are also the basis for constructing
jointrees, which drive clustering algorithms [9, 13]. In both cases, the complexity
of algorithms is exponential only in the width of given elimination order w.
Hence, generating low-width elimination orders is critical for the efficiency of
these algorithms.

An algorithm is presented in [5] for converting an elimination order of width
w into a dtree of width < w. The method allows one to capitalize on algorithms
for constructing low-width elimination orders in order to construct low-width
dtrees. Here, we present a result which allows us to do the opposite. Specifically,
we show how a dtree of width w can be used to induce elimination orders of
width < w. In fact, we show that each dtree specifies a partial elimination order,
and any total order consistent with it is guaranteed to have no greater width.

Definition 5. LetT be a dtree for DAG G. We say that node v of G is eliminated
at node t of T precisely when v € cluster(t) — context(t).

Note that for an internal node ¢, cluster(t) — context(t) is precisely cutset(t) [5].
Figure 5 depicts a dtree and the DAG nodes eliminated at each of its nodes.

Theorem 1. Let T be a dtree for DAG G. Then every DAG node is eliminated
at some unique dtree node in T.

This allows us to define a partial elimination order, where for each DAG nodes v
and u, we have v < u iff the dtree node at which v is eliminated is a descendant
of the dtree node at which w is eliminated.

In the dtree of Figure 5, we have C < E < A < D,F. We also have H <
E, B < A and G < D,F. Any total elimination order consistent with these
constraints is guaranteed to have no greater width than that of the dtree.

Theorem 2. Let T be a dtree of width w for DAG G and let be a total elimi-
nation order for G which is consistent with the partial elimination order defined
by T. The width of 7 is then < w.

The following two orders are consistent with the dtree in Figure 5:
<C,H,E,B,A,G,D,F > and < H,C,B,E,G, A, F,D >. Each of these elim-
ination orders has width 2. It is easy to generate an elimination order which is
consistent with a given dtree through a post-order traversal of the dtree.

Therefore, if we have an algorithm for constructing low-width dtrees, then we
immediately have an algorithm for constructing low-width elimination orders.

A similar result exists for converting a dtree of width w into a jointree of the
same width [5]. We review the result here as it allows us to put the experimental
results of Section 5 in broader perspective. We start with the formal definition
of a jointree.

A jointree for DAG G is a pair (T,C), where T is a tree and C' labels each
node in T' with a subset of nodes in G such that

1. Each family of DAG G is contained in some label C(v).
2. For every three nodes v,u and w in 7', if w is on the path connecting v and
u, then C(v) N C(u) C C(w).

Each label C(v) is called a cluster, and the width of a jointree is defined as the
size of its largest cluster minus one. Another important aspect of a jointree is
its separators: for each edges (u,v) in the jointree, one defines the separator as
C(uw) N C(v). The running time of algorithms based on jointrees is exponential
in the width. Their space complexity, however, can be only exponential in the
size of the separators.

It is shown in [5] that if T is a dtree for a DAG G, and if C is a function
that maps each node in dtree T to its cluster (as defined in Definition 4), then
(T, C) is a jointree for DAG G. Moreover, the contexts of the dtree correspond
to the separators of the induced jointree. This means that one can easily convert
a dtree into a jointree of the same width. It also means that if the dtree have
small contexts, then the jointree will have small separators. Finally, if the dtree
is balanced, then the jointree it induces will be also balanced in the following
sense. We can choose a jointree node (call it the root) so that the distance from
the root to any jointree leaf is O(logn), where n is the number of DAG nodes.
This property is quite desirable for jointree algorithms as it reduces the amount
of message propagation needed when the evidence on a small number of variables
changes.

5 Experimental Results

We compare experimentally in this section two methods for constructing dtrees:
one based on elimination orders and another based on hypergraph partitioning.
The first method generates unbalanced dtrees, while the second generates bal-
anced ones. As long as the two methods are comparable with regards to the width
of dtrees they generate, we will prefer balanced dtrees. There are many heuristics
for generating low-width elimination orders [12], but it is well accepted that the
min-fill heuristic is among the best. This is the one we use in our experiments.
To build dtrees for our set of benchmark suites with HGR2BDT, we imple-
mented HGR2BDT in C++ using the Standard Template Library, as well as the
hMeTiS hypergraph partitioning package from the University of Minnesota [11].
Recall that hMeTiS allows the user to specify how balanced each partition will
be. We varied this parameter such that hMeTiS could produce bipartitions of
maximum ratio 51-49, 60-40, 70-30, 80-20, and 90-10. For example, for ratio 60-
40, the larger part of the bipartition could be comprised of at most 60% of the
vertices of the original hypergraph. Since hMeTiS is also nondeterministic, we
ran 5 trials at each balance setting, and then took the best dtree (in terms of
width) from the 25 total trials. This is the dtree that we report in our results.

Table 1. Statistics for ISCAS’85 Benchmark Circuits.

Circuit hgrabdt Min-fill
Unbalanced Balanced
Width|Context|Height |[Width [Context|Height | Width[Context [Height
Width Width Width
<432 27 23 il 37 23 16 37 23 12
<499 22 19 13 24 25 a7 31 25 13
<880 23 22 i3 35 22 43 29 25 16
1365 22 19 24 24 25 49 31 25 16
<1908 14 32 i3 50 13 23 51 16 16
<2670 33 29 32 37 32 39 37 29 19
3540 74 61 i5 o7 81 73 o7 81 19
c5315 52 49 i6 45 a4 79 53 51 19
<6288 16 38 35 53 13 48 53 13 19
<7552 a3 35 17 a8 37 a1 51 a2 o1

Table 2. Results for Suite of Belief Networks.

Network hgr2bdt Min-fill
Unbalanced Balanced
‘Width|[Height [Width [Height [Width |[Height
barley 7 10 7 19 8 9
diabetes 7 11 4 53 9 14
link 16 17 15 33 19 17
mildew 5 7 4 13 7 8
muninl 11 10 11 31 12 12
munin2 9 13 7 47 9 17
munin3 8 16 7 35 10 17
munin4 9 13 8 37 10 18
pigs 11 11 10 38 14 14
water 10 7 10 12 10 9

Our first suite of DAGs is obtained from the ISCAS’85 benchmark circuits
[2]. These circuits have been studied by El Fattah and Dechter in [7], wherein
elimination orders were generated using several well-known heuristics. We found
that min-fill produced better orders than any of the heuristics surveyed in [7].
Hence we used min-fill to construct elimination orders for these circuits, then
constructed dtrees based on these orders in the manner described by [5]. We also
constructed dtrees using HGR2BDT. The results are reported in Table 1. A third
class of dtrees is also reported, which results from balancing the first class using
a technique described in [5].

A number of observations are in order here. First, if all we care about is gen-
erating low-width elimination orders, then constructing a dtree using HGR2BDT
and extracting an elimination order from it is almost always (much) better than
using the min-fill heuristic. A particularly dramatic example of this is ¢3540, for
which HGR2BDT was able to produce an elimination order of width 74. By con-
trast, min-fill produced an elimination order of width 97, while the best heuristic
surveyed by El Fattah and Dechter in [7] produced an elimination order of width
114. Interestingly enough, these dtrees not only lead to better elimination orders,
but are also balanced and tend to have smaller contexts. Therefore, HGR2BDT
appears to be favorable for constructing dtrees and jointrees as well, for which
other properties (beyond width) are of interest.

Our second class of DAGs is obtained from belief networks posted at http://
www.cs.huji.ac.il/labs/compbio/Repository/; see Table 2. For these networks,
the min-fill heuristic (without balancing) did better overall than either of the
two methods that generate balanced dtrees. So we are paying a price here for

Table 3. Results for Randomly Generated DAGs.

Number| Edge| Version hgr2bdt Min-fill
of nodes|prob. Unbalanced Balanced
Width[Context|Height [Width[Context|[Height|[Width[Context[Height
Width Width Width

200| .015 1 22 20 10 22 21 37 22 21 13
2 34 28 10 32 31 42 33 31 13

3 28 23 11 28 26 35 31 27 13

4 29 25 10 29 28 42 30 28 13

5 29 26 10 27 26 38 29 26 13

300[.008 1 29 25 11 31 30 47 31 30 14
2 24 21 11 24 23 37 25 23 13

3 33 29 11 33 33 50 35 32 14

4 29 25 11 31 30 40 31 30 15

5 30 27 11 31 30 49 32 31 14

400(.005 1 21 19 11 21 20 50 23 20 14
2 20 18 11 20 19 45 21 20 15

3 17 16 11 15 15 42 18 19 15

4 18 16 11 18 19 42 21 19 15

5 22 19 11 24 23 44 24 23 15

500| .004 1 16 15 11 16 14 39 16 14 15
2 21 20 14 22 21 44 24 22 15

3 23 21 12 24 22 51 24 22 14

4 26 23 11 25 23 48 28 22 15

5 23 22 11 23 22 32 23 22 16

balance, although it does not seem to be too high.? The highest price appears
to be for network diabetes, which has 413 nodes and whose dtree height went
from 53 to 11. What is clear though is that generating balanced dtrees using
HGR2BDT appears to be superior to generating dtrees using an elimination order
and then balancing them.

Our third suite of DAGs is generated randomly according to the given prob-
abilities of edges; see Table 3. For this suite, the use of HGR2BDT for generating
dtrees, jointrees and elimination orders seems to produce the best results overall,
considering width, context width and height.

It is worth noting that the execution time of HGR2BDT is reasonable. For
the largest network in our testing set, c7552 (a network with 7230 vertices),
HGR2BDT takes approximately 5 minutes to produce a dtree on a Pentium II
266. For most of the smaller networks, the execution time of HGR2BDT is only a
matter of seconds.

6 Conclusion

This paper rests on two contributions, one theoretical and another practical.
Theoretically, we have shown how methods for recursively decomposing DAGs
can be used to construct elimination orders, dtrees and jointrees. Practically,
we have proposed and evaluated the use of a state-of-the-art system for hy-
pergraph partitioning to recursively decompose DAGs and, hence, to construct
elimination orders, dtrees and jointrees. The new method appears to be differ-
ent from current tradition in automated reasoning, where elimination orders are
the basis of constructing various graphical models. There are many heuristics

2 We are treating these networks as having variables with equal cardinalities, which is
a simplifying assumption. The situation is more complex if we decide to take variable
cardinalities into account.

for generating low-width elimination orders, and it is customary for automated
reasoning systems to give the user a choice of which one to use since even a
small reduction in width can have a drastic practical effect. Our experimental
results suggest that the construction of graphical models based on hypergraph
partitioning should clearly be considered as one of these choices, whether one is
interested in elimination orders, jointrees, or dtrees.

References

10.

11.

12.

13.

14.

. Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning.

Integration, the VLSI Journal, 19(1-81), 1995.

F. Beglez and H. Fujiwara. A neutral netlist of 10 combinational
benchmark circuits and a target translator in FORTRAN. In Pro-
ceedings of the IEEE symposium on Circuits and Systems, 1985.
http://www.cbl.ncsu.edu/www/CBL_Docs/iscas85.html.

Adnan Darwiche. Compiling knowledge into decomposable negation normal form.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
pages 284-289, 1999.

. Adnan Darwiche. Utilizing device behavior in structure-based diagnosis. In Pro-

ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages
1096-1101, 1999.

Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-2):5-41,
February, 2001.

Rina Dechter. Bucket elimination: A unifying framework for probabilistic infer-
ence. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 211-219, 1996.

Yousri El Fattah and Rina Dechter. An evaluation of structural paramters for
probabilistic reasoning: Results on benchmark circuits. In Proceedings of the 12th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 244-251, 1996.
Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, San Francisco, CA, 1979.

F. V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in recursive
graphical models by local computation. Computational Statistics Quarterly, 4:269—
282, 1990.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel
hypergraph partitioning: Applications in vlsi domain. IEEE Transactions on VLSI
Systems, 1998.

George Karypis and Vipin Kumar. hMeTiS: A Hypergraph Partitioning Package,
1998.

U. Kjaerulff. Triangulation of graphs—algorithms giving small total state space.
Technical Report R-90-09, Department of Mathematics and Computer Science,
University of Aalborg, Denmark, 1990.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of Royal
Statistics Society, Series B, 50(2):157-224, 1988.

Nevin Lianwen Zhang and David Poole. Exploiting causal independence in bayesian
network inference. Journal of Artificial Intelligence Research, 5:301-328, 1996.

A Proofs

Proof of Theorem 1

Follows since:

— All the cutsets of a dtree are disjoint, hence, a variable cannot be eliminated
at two different internal nodes.
By definition of a cutset, all cutsets on the same path from root to leaf are
disjoint. Now suppose that two cutsets contain the same variable X and are
descendants of node ¢ in a dtree. By definition of cutset, either the cutset of
t or the cutset of an ancestor of ¢ must contain X. This is a contradiction.

— A variable X is eliminated at a leaf node t only if X € vars(t) and X ¢
vars(t') for any other leaf node t'-otherwise, X € context(t) and will not be
eliminated at t. Hence, if a variable is eliminated at a leaf node, then it cannot
be eliminated at any other leaf node. Morever, by the previous property and
definition of cutset, X cannot appear in any dtree cutset. Hence, it cannot
be eliminated at an internal node either.

Proof of Theorem 2

Given a decomposition tree T', which is annotated by eliminated variables at each
node, let us perform a variable elimination process where variables are eliminated
at the children of a node before they are eliminated at the node itself:

— When eliminating variables at a leaf node ¢, we sum-out these variables (in
any order) from the table at ¢ and store the result at ¢. Note that if a variable
X is eliminated at a leaf node t, then X appears only at that leaf node.

— When eliminating variables at a non-leaf node ¢, we multiply the tables at the
children of ¢; sum-out the variables (in any order) from the multiplication;
and store the result at ¢. Note that if X € cutset(t), then X must appear in
the tables stored at the children of ¢.> Hence, when eliminating X, the two
tables must be multiplied together. When cutset(t) is empty though, there
is no need to multiply the two tables but we will multiply them without loss
of generality.

We can prove that the table stored at a node ¢t during the elimination process is
defined over context(t). This clearly follows for tables stored at each leaf node.
For a table stored at a non-leaf node, it follows since context(¢;) U context(t,) =
cluster(t) and, hence, (context(t;) U context(t,)) — cutset(t) = context(t) [5].
Now, to prove that the width of any of the elimination orders above is < w,
we need to prove that no table will have more than w + 1 variables in the
above elimination process. This follows since context(¢;) Ucontext(t,) = cluster(t).
Therefore, at no point will the elimination scheme have a table with more than

3 By definition of a cutset, X must appear in some table of dtree ¢; and in some table
of dtree t,. Moreover, by Theorem 1, X could not have been eliminated earlier.

| cluster(t) | variables, for some node ¢ in the dtree. Note, however, that we may
construct a table over variables cluster(t) when we can afford not to (that is,
when cutset(t) = (§). Therefore, the width of the elimination order may actually
be less than w. Here is an example: DAG5—>0— 1,552 —3 >4 — 6. The
elimination order 6,4,1,0,5,2,3 has width 1. Yet, it is compatible with a dtree

of width 2: ((46) * (34)) (((23) = (5)) * ((25) * ((05) * (01)))).]

