A Practical Relaxation of Constant-Factor Treewidth
Approximation Algorithms

Mark Hopkins
Dept. of Computer Science
University of California, Los Angeles
Los Angeles, CA, 90095, USA
mhopkins@cs.ucla.edu

Adnan Darwiche
Dept. of Computer Science
University of California, Los Angeles
Los Angeles, CA, 90095, USA
darwiche@Qcs.ucla.edu

Abstract

Algorithms that triangulate a graph such that the resulting triangulation is at most a
constant-factor from the treewidth are important theoretically, but perform poorly in
practice. In this paper, we show that a successful heuristic method for triangulating graphs
(based on a structure known as a dtree) can be viewed as a relaxation of a well-known
family of constant-factor approximation algorithms. In doing so, we provide a theoretical
underpinning for this heuristic, and show how these theoretically elegant approximation
algorithms can be effectively applied in practice.

1 Introduction

Given an undirected graph G and a triangula-
tion for G of bounded width, there are a wide
variety of graph operations that can be per-
formed in polynomial time. Applications of
interest to artificial intelligence researchers in-
clude constraint satisfaction problems (Dechter
and Pearl, 1989) and Bayesian network infer-
ence (Lauritzen and Spiegelhalter, 1988; Jensen
et al., 1990; Dechter, 1996; Darwiche, 2001).
Hence, it is desirable to find algorithms that for
a given graph G, return a graph triangulation
with width as close as possible to the treewidth
of G, i.e. the width of the best existing trian-
gulation.

Since finding an optimal graph triangulation
is an NP-hard problem (Arnborg et al., 1987),
much attention has been given to providing al-
gorithms that triangulate a graph such that the
width of the triangulation is guaranteed to be
within some (not-necessarily constant) factor of
the treewidth. Although polynomial-time algo-
rithms have been presented that approximate
the treewidth k£ of a graph with n vertices to
within a factor of lg(k) (Amir, 2001) and Ig(n)
(Kloks, 1994; Bodlaender et al., 1995), it is still
an open question as to whether a polynomial-

time algorithm exists that approximates the
treewidth to within a constant factor. Existing
algorithms by (Robertson and Seymour, 1995;
Reed, 1992; Becker and Geiger, 1996; Amir,
2001; Kloks, 1994) run in time exponential in
the treewidth.

In this paper, we show that a recent heuristic
algorithm that provides good approximations to
treewidth (but no guarantees) can be viewed as
a relaxation of the family of constant-factor ap-
proximation algorithms presented in (Robert-
son and Seymour, 1995; Reed, 1992; Becker and
Geiger, 1996; Amir, 2001; Kloks, 1994). This
algorithm has been shown to be both fast and
competitive with the best known algorithms
for generating low-width graph triangulations
(Darwiche and Hopkins, 2001).

The algorithm is presented in terms of a
graphical data structure known as a decomposi-
tion tree (dtree). Every dtree has a width asso-
ciated with it, and can be transformed in poly-
nomial time into a graph triangulation of equiv-
alent or lesser width. Thus, any algorithm for
constructing low-width dtrees is immediately
an algorithm for constructing low-width graph
triangulations. Hence, after reviewing in Sec-
tions 2 and 3 the basics of graph triangulation,

treewidth, and the existing algorithms that ap-
proximate treewidth to within a constant fac-
tor, we proceed in Section 4 by defining dtrees
in terms of undirected graphs (previously, it was
defined in terms of directed acyclic graphs). We
then review our heuristic algorithm in Section 5
and show in Section 6 that it can be viewed as
a relaxation of the exponential-time approxima-
tion algorithms. This perspective gives us an al-
ternate formulation of these algorithms in terms
of dtrees that allows us to gain further insight
and intuition. Moreover, it demonstrates how
the theoretical ideas behind these exponential-
time algorithms can be exploited for practical
usage.

2 Graph Triangulations and
Treewidth

In this section, we review the central concepts
of a graph triangulation and treewidth. First,
we need some basic graph terminology. Unless
stated otherwise, we will use the term graph to
denote an undirected graph G = (V, E), where
V is a finite set of vertices, and F is a finite set
of edges (we disallow the possibility of self-loops
and multi-edges). The vertez set of a graph G
is denoted V(G), while the edge set is denoted
E(G). A pair of vertices u,v € V(G) are said
to be adjacent if (u,v) € E(G). A graph G is
complete if every pair of vertices of V(G) are
adjacent.

A path between two vertices v, v; € V(G) is
a sequence of distinct vertices [vg, v1, ..., vj—1] of
V(QG) such that for 1 <i < j, (v;_1,v;) € E(G).
A cycle is a path from a vertex v back to v.

We now have enough terminology to dis-
cuss graph triangulations and define treewidth.
Given an undirected graph, we triangulate it by
adding edges such that we eliminate all chord-
less cycles of length greater than 3. That is
to say, we ensure that for every cycle of length
greater than 3, there exists some edge between
two non-adjacent vertices of the cycle. A graph
satisfying this property is said to be triangu-
lated. Given an undirected graph G = (V, E),
we define a triangulation of G as a supergraph
G' = (V,E') of G such that G’ is triangulated.

We can define the width of a triangulated graph
as the size of its largest clique, minus one. Fur-
thermore, for an undirected graph G, we can
define its treewidth as the minimum width over
all possible triangulations of G.

3 Approximation Algorithms

Optimal algorithms for computing graph trian-
gulations are generally very restricted in the
types of graphs for which they can compute tri-
angulations in a reasonable time frame (Arn-
borg et al., 1987; Shoikhet and Geiger, 1997;
Bodlaender, 1993). As a result, there has been
an emphasis on designing approzimation algo-
rithms that triangulate a graph G such that the
width of the resulting graph is guaranteed to be
within some (not-necessarily constant) factor of
the treewidth of G. It is currently unknown
whether a constant-factor approximation can be
found in polynomial time. Existing algorithms
by (Robertson and Seymour, 1995; Reed, 1992;
Becker and Geiger, 1996; Amir, 2001; Kloks,
1994) run in time exponential in the treewidth.

All of these algorithms are variants on the
constant-factor approximation algorithm pre-
sented by (Robertson and Seymour, 1995),
which provides a factor-4 approximation. In
this section we describe one formulation of this
algorithm, similar to the formulations presented
in (Reed, 1992) and (Amir, 2001).

It will help to introduce some more graph
terminology. The subgraph of G induced by
a subset S of the vertices of G, denoted G[S],
is the graph over S consisting of the edges of

G that connect two vertices of S. Formally,

GIS] @ (S, {(uv) € E@)|uv € S}). A

cligue of G is a subset S of the vertices of G such
that G[S] is a complete graph. For a subset S
of the vertices of G, G\ S is defined as the graph
that results from removing S from G, along

with all edges incident to vertices in S. For-

mally, G\S ¥ (V(G)\S, {(u,v) € E(G)|u,v €

(VIG\S)})-

A graph is connected if there exists a path
between every pair of vertices of G and dis-
connected otherwise. A wvertex separator (also
called simply separator) is a set S of vertices

(@ (o)

Figure 1: (a) An example graph with separator
CDEH. (b) The edge partition of the graph
with respect to separator CDEH.

of G such that G\S is disconnected. If S is a
maximal set of vertices of G such that G[S] is
connected, then we refer to G[S] as a connected
component of G.

The edge subgraph of G induced by a subset
R of the edges of G, denoted G[R], is defined as
the graph consisting of the set of edges R, along
with the vertices that the edges of R are inci-

dent to. Formally, G[R] ¢ ({v € V(G)|(3u €
V(@) ((u,v) € R)}, R).

Each vertex separator induces a unique par-
tition of the graph edges, which we define next;
see Figure 1. Suppose S is a vertex separator of
graph G, and let C be a connected component
of G\S. Let R be the subset of E(G) contain-
ing edges between two nodes in C' and between
a node in S and a node in C. We will refer to
G[R] as an edge component of graph G with re-
spect to separator S. Clearly for each connected
component of G\S, there exists a unique corre-
sponding edge component of G with respect to
S. We define (Cy,C1,...,Cy) as the edge par-
tition of graph G with respect to separator S,
where Cy = G[S], and the C;,1 < i < k are the
edge components of G with respect to .S. Notice
that the edge partition is unique, and that the
collection of edge subgraphs form a partition of
the edges of G (i.e. every edge of G appears in
exactly one of the graphs C;). We show an edge
partition for an example graph in Figure 1. We
can further define a 2-way edge partition with
respect to separator S by arbitrarily merging
the components of the edge partition into two

Algorithm FACTOR4

FAacTOR4(graph G = (V, E), set W C V, int k)

01. If |[V| < 4k + 1, then make a clique of G
and return.

02. Find a vertex separator X in G such that
|X| < k+1, and a 2-way edge partition
(Go = (Vo, Ep),G1 = (V1, E1)) of G with
respect to X such that neither V5\X nor
V1\X contains more than 2/3 of the
variables in W. If these cannot be found,
then return “treewidth greater than k.”

03. Call FACTOR4(Go, (VoN W)U X, k).

04. Call FACTOR4(G1, (Vi N W)U X, k).

05. Add edges between vertices of W U X so
that G[W U X] is a complete graph.

Figure 2: Pseudocode for a 4-factor treewidth
approximation algorithm. The algorithm mod-
ifies the original input graph at all levels of re-
cursion.

graphs, which together make up a partition of
the edges of the original graph. Note that there
are many possible 2-way edge partitions for a
given separator.

The algorithm that approximates treewidth
to within a factor of 4 is given in Figure 2. Call-
ing FACTOR4(G,0,k) returns either a valid an-
swer that the treewidth of G is greater than k, or
a triangulation of G with width at most 4k + 1.
This is proven in (Robertson and Seymour,
1995; Reed, 1992). The key to this algorithm
is step 2. Given that the treewidth of a graph
G is k (or less), it is always possible to find a
vertex separator X of size k + 1 (or less) such
that the connected components of G\ X contain
at most 2/3 of the vertices of any given subset
of the vertex set. Hence we can see that the size
of W will never exceed 3k + 1 on any recursive
call (2/3*(3k+1)+ (k+1) < 3k +2). Thus
the maximum clique size in the resulting trian-
gulated graph will be (3k+1)+ (k+1) = 4k+2,
which implies that the algorithm will always re-
turn a triangulation of width at most 4k + 1.

The main computational drawback of this al-
gorithm lies in the search for an appropriate ver-
tex separator. All existing algorithms thus far
use subroutines that run in time exponential in
the treewidth of the graph.

4 Dtrees

We now turn our attention to a successful
heuristic algorithm presented in (Darwiche and
Hopkins, 2001) that is much faster than the ap-
proximation algorithms of the previous section,
and also produces far better graph triangula-
tions in practice (Darwiche and Hopkins, 2001;
Amir, 2001). This algorithm was originally con-
ceived in the context of a structure called a de-
composition tree (dtree), and this is how we will
introduce it. Later, we will provide a firm the-
oretical foundation for this heuristic by show-
ing how it can be viewed as a relaxed version
of the approximation algorithm of the previous
section.

A dtree (decomposition tree) is a full binary
tree which induces a recursive decomposition of
the edges of an undirected graph. Dtrees are
used to drive divide-and-conquer algorithms,
such as the algorithm of recursive conditioning
for inference in Bayesian networks (Darwiche,
2001). Previously, dtrees had only been defined
in terms of directed acyclic graphs (DAGs).
Here, we provide an analogous definition for
undirected graphs.

Definition 1 A dtree T for an undirected graph
G is a full binary tree, the leaves of which cor-
respond to the edges of G. If t is a leaf node in
dtree T which corresponds to edge (v,w) of G,

we define vars(t) e {v,w}.

Figure 3 depicts two dtrees for the graph
shown in the same figure. Examine the second
dtree. The root node specifies a partition of
the graph edges into two sets: {AB,AC} and
{BC,CD,BD,CE}. The left subtree specifies
a partition of edges {AB,AC} (in this case,
unique), while the right subtree specifies a par-
tition of edges { BC,CD,BD,CE}.

We will use ¢; and ¢, to denote the left child
and right child of node ¢ in a dtree, respectively.
Following standard conventions on binary trees,
we will often not distinguish between a node and
the dtree rooted at that node. Notice that the
dtree rooted at any internal node represents a
subset of the edges of the original graph. This
can alternatively be viewed as a graph contain-

. /
/’l /N
/ ’.'\,
\ /\’ ’
A8 Ac Ck BC b BD b Ac & BC b D
Figure 3: A graph and two corresponding

dtrees.

ing precisely these edges. We will denote the
edge subgraph represented by node ¢ of a dtree
as G(t).

Let us give a flavor of the algorithmic util-
ity of dtrees. We first extend the definition for
the wvariables of a dtree node to include inter-
nal nodes. For an internal node t of a dtree,

vars(t) = vars(t;) U vars(t,).

Next we introduce the important concept of
a context. Given a subset of edges R of E(G),
we refer to the subgraph boundary of G[R] as
the set of vertices shared between G[R] and
G[E(G)\R]. We can naturally consider the sub-
graph boundary of G(t) for any node t of a
dtree. Notice that this gives us the set of vari-
ables that are shared between the graph rep-
resented by node ¢ and the rest of the original
graph. We refer to this as the context of t. In
practical terms, it allows an algorithm to deduce
which variables from the overall computation
are particularly relevant to the subcomputation
represented by .

Furthermore, each internal dtree node ¢ gives
a recipe for splitting G(¢) into two subgraphs.
We refer to those variables that are shared be-
tween these two subgraphs (that are not al-
ready in the context of ¢) as the cutset of
t. Formally, the cutset of t is defined as

cutset(t) o vars(t;) N vars(t,) — context(t).
It is convenient to give a new name to the

union of cutsets and contexts, which summa-
rizes those variables that are “relevant” at a

A BCY o
// \ o //\\{Byc)

/ /\ / / \
/ AN / /N BS
/ /N / /
@ [/] > {0} ®cy/ Y \ {8C)
\ /) \ VR Y
\ / / / \ \ / / / \
AB AC CE BC CD BD AB AC CE BC CD BD
{AB} {AC} {C} {BC}{CD} {8D}
(@ (b)
NG
/N
// B0
/ /
/ />\/ ®.C)
/ /N
/ / /
ascy / > ®C0}
ANATEVA

AB AC CE BC CD BD
{AB} {AC} {CE} {BC} {CD} {BD}

©

Figure 4: (a) A dtree and its cutsets (in italic).
(b) A dtree with its contexts (in italic). (c) A
dtree with its clusters (in italic).

given dtree node. We define

if t is leaf;
otherwise.

vars(t),
cutset(t) U context(t),

cluster(t) = {

The width of a dtree is defined as the size of
its largest cluster minus 1. Similarly, the context
width is the size of its largest context, while the
cutset width is the size of its largest cutset.

Figure 4(a) shows a dtree and its correspond-
ing cutsets. Figure 4(b) shows the dtree con-
texts and Figure 4(c) shows its clusters.

The ways in which cutsets and contexts are
used by conditioning algorithms are outside the
scope of this paper, but we refer the reader to
(Darwiche, 2001; Darwiche, 1999a; Darwiche,
1999b) for details. Here, we only focus on
the significance of these sets from a complex-
ity viewpoint. Specifically, we can use the al-
gorithm of recursive conditioning given in (Dar-
wiche, 2001) to compute the probability of some
variable instantiation using running time expo-
nential in the width of the dtree (under space
exponential in the context width). Alterna-
tively, we can do this computation using run-
ning time exponential in the height multiplied
by the cutset width (under linear space). In
fact, the above complexity results represent two
extremes on a time-space tradeoff spectrum. In
general, we can use any amount of space we
have available, and still be able to predict the
average running time of recursive conditioning

(Darwiche, 2001).

(Hopkins and Darwiche, 2002) demon-
strates polynomial-time transformations be-
tween dtrees and graph triangulations that pre-
serve width. In other words, for a given graph
G, it is possible to convert a triangulation of G
with width w into a dtree of G with width at
most w, and vice versa.

Hence there is a dual motivation for provid-
ing algorithms that construct dtrees directly.
Firstly, when we are interested in properties of
the dtree like height, context width, and cutset
width, we have no control over such properties
when constructing other data structures (like
graph triangulations and elimination orders),
since they are not classically defined for such
structures. Thus, when we are interested in op-
timizing such properties, it is to our advantage
to construct dtrees directly. Secondly, due to
the polynomial-time transformations discussed
above, any algorithm for constructing dtrees of
low width are immediately good algorithms for
providing low-width graph triangulations. In
the next section, we detail our heuristic method
for constructing dtrees.

5 Dtree Construction as
Hypergraph Partitioning

The structure of dtrees lend themselves to a
heuristic method based on recursive decomposi-
tion of the graph. The technique we now present
uses hypergraph partitioning as a tool for di-
rectly generating low-width dtrees.

A hypergraph is a generalization of a graph,
such that an edge is permitted to connect an ar-
bitrary number of vertices, rather than exactly
two. The edges of a hypergraph are referred to
as hyperedges. The problem of hypergraph par-
titioning is to find a way to split the vertices of
a hypergraph into k approximately equal parts,
such that the number of hyperedges connecting
vertices in different parts is minimized (Karypis
et al., 1998).

For our purposes, we used hMeTiS, a hy-
pergraph partitioning package distributed by
the University of Minnesota (Karypis and Ku-
mar, 1998). A more detailed account of hyper-

(o)

Figure 5: (a) From the undirected graph to a
hypergraph. (b) An example bipartitioning of
the hypergraph into two subgraphs.

graph partitioning and the various algorithmic
approaches can be found in (Darwiche and Hop-
kins, 2001).

Generating a dtree for an undirected graph
using hypergraph partitioning is fairly straight-
forward. The first step is to express the graph
G = (V,E) as a hypergraph H:

e For each edge e € E, we add a node N, to
H.

e For each vertex v € V, we add a hyperedge
to H which connects all nodes N, such that
v is an endpoint of e.

An example of this is depicted in Figure 5(a).
Notice that any full binary tree whose leaves
correspond to the edges of H is a dtree for our
graph. This observation allows us to design
a simple recursive algorithm using hypergraph
partitioning to produce a dtree. Figure 6 shows
the pseudocode for this algorithm. HGR2BDT
starts by creating a dtree node ¢ at Line 01.
Lines 02-05 correspond to the base case where
hypergraph H contains a single vertex N, (cor-
responding to edge e = (u,v)) and, hence, leads
to a unique dtree which contains the single leaf
node ¢ with vars(t)<{u,v}. Lines 06-08 corre-
spond to the recursive step where hypergraph
H has more than a single vertex. Here, we
partition the hypergraph H into two subgraphs
H; and H,, then recursively generate dtrees

Algorithm HGR2BDT

HGR2BDT (hypergraph H)
01. create dtreenode ¢
02. if H has only one vertex Np,
03. then vars(t) + F

04. t; < NULL

05. t; <= NULL

06. else partition H into subgraphs H; and H,
07. t; < HGR2BDT(H,)

08. t, < HGR2BDT(H,)

09. return ¢

Figure 6: Pseudocode for producing dtrees us-
ing hypergraph partitioning.

HGR2BDT(H;) and HGR2BDT(H,) for these sub-
graphs, and finally set these dtrees as the chil-
dren of dtree node t.

HGR2BDT attempts to minimize the cutset of
each node t it constructs at Line 01. To see
this, observe that every time we partition the
hypergraph H into H; and H,, we attempt to
minimize the number of hyperedges that span
the partitions H; and H,. By construction,
these hyperedges correspond to graph vertices
that are shared by edges in H; and those in H,
(which have not already been cut by previous
partitions). Hence by attempting to minimize
the number of hyperedges that span the parti-
tions H; and H,, we are actually attempting to
minimize the cutset associated with dtree node
t. Notice that we do not make any direct at-
tempt to minimize the width of the dtree. How-
ever, we shall see in the following section that
cutset minimization is a good heuristic for dtree
width minimization.

An advantage to this approach is that it also
produces balanced dtrees, in the sense that for
any node in the dtree, the ratio of the number of
leaves in its left subtree to the number of leaves
in its right subtree is bounded. This is a di-
rect consequence of the fact that hMeTiS com-
putes balanced hypergraph partitions. Thus the
algorithm computes dtrees that have height of
O(log n), where n is the number of vertices in
the given graph.

In (Darwiche and Hopkins, 2001), empirical
results show that HGR2BDT performs quite fa-
vorably versus one of the best known heuris-

A A
/N AN
[
N
/A\ /A\ —
AB BE AC CD / \ /\
C D / AB BE AC CD
N\ —

Figure 7: hgr2bdt from the perspective of vertex
separators (above) and from the perspective of
hypergraphs (below).

tic methods for graph triangulation, namely
the min-fill heuristic for constructing elimina-
tion orders. Hence, in approaching this problem
from the perspective of dtrees, we have man-
aged to obtain one of the best known methods
in practice for triangulating a graph. However,
up until now, this method was lacking a solid
theoretical basis. In the next section, we show
how HGR2BDT can be viewed as a relaxed ver-
sion of the theoretically sound but empirically
impractical approximation algorithm detailed in
Section 3.

6 Relationship to Approximation
Algorithms

Counsider the process of building a dtree for an
undirected graph G = (V, E) by finding a ver-
tex separator S, choosing a 2-way edge partition
(Go, G1) of G with respect to S, and construct-
ing dtrees for Gy and G;.

After doing this, we then return a dtree node
whose children are the two dtrees just con-
structed. Notice that this is exactly the process
of HGR2BDT. Finding a vertex separator cor-
responds precisely to finding a hypergraph cut,
whereas Gy and G are the two smaller hyper-
graphs that result after the hypergraph parti-
tion. In Figure 7, we show the HGR2BDT from
the perspective of hypergraphs (as it is defined)
and from the perspective of vertex separators
(outlined above).

During this process, any given dtree node rep-
resents a subgraph G’ = (V', E') of the original
graph and has a context C' C V' associated with
it. Assume two things about the process of find-
ing a vertex separator for this subgraph. Firstly,
suppose that our algorithm always finds a ver-

tex separator of size k41 or less, where k is the
treewidth of the original graph. Moreover, sup-
pose that our algorithm always finds a vertex
separator of size k + 1 or less such that each of
G1 and G2 contain at most 2/3 of the vertices
of the context. Such a separator always exists
— this is proven, as we noted in Section 3, in
(Robertson and Seymour, 1995).

We can show that the preceeding algorithm
is guaranteed to return a dtree whose width is
at most 4k + 1. Quite simply, suppose that a
given node has context of size at most 3k + 1.
Thus, the context of any of its children contains
at most 2/3 of the variables in its own context
(i.e. 2/3 of 3k + 1 = 2k), plus the variables in
its cutset (which is at most k + 1). Since the
context of the root node contains zero variables
(and hence has context less than 3k + 1), the
context of any node in the dtree can have at
most 3k + 1 variables. Since we also know that
the cutset of any node is at most k + 1, we can
conclude that the maximum cluster size of any
node is 4k + 2 (hence width is at most 4k + 1).

In fact, this algorithm described above is pre-
cisely the 4-factor approximation algorithm in
(Robertson and Seymour, 1995), (Reed, 1992),
and (Amir, 2001), when discussed in the lan-
guage of dtrees. Notice that the set W in
FACTOR4 can be naturally thought of as the
context of the current dtree node, while the
set X corresponds to the cutset. Similar algo-
rithms proposed in (Becker and Geiger, 1996)
and (Amir, 2001) can be analogously expressed.
Thus, HGR2BDT can be viewed as a relaxed,
heuristic version of these approximation algo-
rithms, wherein we do not guarantee to find
cutset width less than or equal to &k + 1, nor
guarantee that the context of each dtree node
will have at most 2/3 of the context variables
of its parent. Rather, HGR2BDT merely at-
tempts to minimize cutset and balance the dtree
(hence distributing the context variables), with
no hard guarantees. Yet, as the experimental
results show, this turns out to be a very effec-
tive method of dtree construction in practice.

7 Conclusion

Through this paper, we have achieved two im-
portant results. From the vantage point of the
existing treewidth approximation algorithms,
we have given an alternative formulation that
provides a very clear and straightforward intu-
ition of how the algorithms work. From the
vantage point of our heuristic for construct-
ing dtrees, we have established a solid theoret-
ical foundation for what has proven to be an
extremely practical and successful method of
graph triangulation.

References

Eyal Amir. 2001. Efficient approximation for trian-
gulation of minimum treewidth. In Proceedings of
the 17th Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann.

Stefan Arnborg, Derek G. Corneil, and Andrej
Proskurowski. 1987. Complexity of finding em-
beddings in a k-tree. SIAM J. Alg. and Discr.
Meth., 8:277-284.

Ann Becker and Dan Geiger. 1996. A sufficiently
fast algorithm for finding close to optimal junction
trees. In Proc. UAI ’96, pages 81-89. Morgan
Kaufmann.

Hans L. Bodlaender, J.R. Gilbert, H. Hafsteinsson,
and Ton Kloks. 1995. Approximating treewidth,
pathwidth, frontsize, and shortest elimination
tree. J. of Algorithms, 18(2):238-255.

Hans. L. Bodlaender. 1993. A linear time al-
gorithm for finding tree-decompositions of small
treewidth. In Proc. 25th ACM Symp. on Theory
of Computing, pages 226—234.

Adnan Darwiche and Mark Hopkins. 2001. Using
recursive decomposition to construct elimination
orders, jointrees, and dtrees. In In Proceedings of
the Sizth European Conference on Symbolic and

Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU), pages 180-191.

Adnan Darwiche. 1999a. Compiling knowledge into
decomposable negation normal form. In Proceed-
ings of International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 284-289.

Adnan Darwiche. 1999b. Utilizing device behavior
in structure-based diagnosis. In Proceedings of

International Joint Conference on Artificial In-
telligence (IJCAI), pages 1096-1101.

Adnan Darwiche. 2001. Recursive conditioning. Ar-
tificial Intelligence, 126(1-2):5-41.

Rina Dechter and Judea Pearl. 1989. Tree cluster-
ing for constraint networks. Artificial Intelligence,
38:353-366.

Rina Dechter. 1996. Bucket elimination: A unify-
ing framework for probabilistic inference. In Pro-

ceedings of the 12th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 211-219.

Mark Hopkins and Adnan Darwiche. 2002. Graph
triangulation from the perspective of decomposi-
tion trees. Technical Report D-133, Computer
Science Department, UCLA, Los Angeles, CA
90095.

F. V. Jensen, S.L. Lauritzen, and K.G. Olesen. 1990.
Bayesian updating in recursive graphical models
by local computation. Computational Statistics
Quarterly, 4:269-282.

George Karypis and Vipin Kumar. 1998. Hmetis:
A hypergraph partitioning package. Awailable at
http://www.cs.umn.edu/ karypis.

George Karypis, Rajat Aggarwal, Vipin Kumar, and
Shashi Shekhar. 1998. Multilevel hypergraph
partitioning: Applications in vlsi domain. IEEE
Transactions on VLSI Systems.

Ton Kloks. 1994. Treewidth. Springer-Verlag, Lec-
ture Notes in Computer Science.

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-

tems. Journal of Royal Statistics Society, Series
B, 50(2):157-224.

Bruce A. Reed. 1992. Finding approximate separa-
tors and computing tree width quickly. In Proc.
24th STOC, pages 221-228. ACM Press.

N. Robertson and P.D. Seymour. 1995. Graph mi-
nors xiii: The disjoint paths problem. J. Comb.
Theory, Series B, 63:65-110.

Kirill Shoikhet and Dan Geiger. 1997. A practi-
cal algorithm for finding optimal triangulations.
In Proc. AAAI ’97, pages 185-190. Morgan Kauf-
mann.

