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Abstract 
Process representation languages designed to support execution 
have evolved to support specialized reasoning capabilities like 
action selection and task decomposition, but do not readily 
support inferences that one might need for explanation or 
question answering.  In this paper, we report on a process 
language, PPL, that we have designed to serve as a bridge 
between a representation designed for execution and a 
representation designed for applications such as question 
answering and explanation generation. Through its use of a 
propositional-style representation of process structure, PPL can 
enable the use of generalized reasoning methods for those 
purposes. PPL is novel in that it directly encodes the process 
"flow chart" in a neutral, KIF-like syntax, allowing other modules 
to introspect on the process structure.  

Introduction 
SPARK (SRI Procedural Agent Realization Toolkit) 
[Morley and Myers 04] is an agent framework that builds 
on a Belief-Desire-Intention (BDI) model of rationality. 
SPARK provides a flexible plan execution mechanism that 
interleaves goal-directed activity and reactivity to changes 
in its execution environment.  SPARK's procedural 
language has a clear, well-defined formal semantics that 
can support reasoning techniques for procedure validation, 
synthesis, and repair.  The SPARK representation language 
(called SPARK-L) is an extended form of Hierarchical 
Task Network (HTN) representation [Erol et al. 04].  
Extensions beyond standard HTN include iteration, 
conditional branching, and certain runtime-specialized 
constructs (WAIT, TRY).    
 
SPARK includes a comprehensive API for monitoring 
executing procedures—called procedure instances—
allowing external modules to view the "trace" of a 
procedure's execution. For example, by using this API an 
external module can find the specific task(s) currently 
being executed, and trace back to find specific previously 
executed tasks and their details. However, while allowing 
access to how a general procedure is playing out, this API 
does not allow access to the general "flow chart" of the 
procedure itself, for example, to find possible future tasks, 
choice points, cycles, and alternative ways the procedure 

may play out. However, many tasks require that a system 
be able to introspect on its own general procedures, in 
particular language understanding, question answering, 
and explanation. This has been particularly true in the 
context of CALO, an integrated cognitive assistant.1 As a 
result, we have enhanced SPARK with a second API 
allowing it to export (an abstraction of) its general 
procedures also. These exported procedures are expressed 
in logic in Portable Process Language (PPL), a language 
we have designed for this purpose, complementing 
SPARK-L, the native process language of SPARK. The 
goals of PPL are to make explicit the steps, their 
arguments, and their relationships in the procedures, and to 
abstract away some of the details critical for execution but 
not needed for introspection. 

 
As a close analogy, consider a system wanting to 
introspect on a piece of software, but only having an API 
to the trace of that software executing. The system could, 
of course, literally try to parse the source code 
representation of the software and try to work out what it 
did (in fact, some software analysis tools do exactly this), 
but this requires the system to have a complete internal 
model of the programming language, both syntax and 
semantics. Instead, it would be nice if the software could 
export a high-level summary of its behavior—literally, a 
flow-chart-like data structure—that other systems could 
                                                 
1 See http://www.ai.sri.com/project/CALO 



then manipulate, expressed in some relatively 
implementation-independent language. Our goal is that 
PPL be such a language, in the specific context of SPARK-
like planning systems. 
 
In this paper, we describe a simplified version of the 
SPARK language and how it is executed, the reasoning 
requirements, PPL, and experiences in using the language 
in the context of an agent system. We conclude with 
directions for future work. 

Description of SPARK Process Language 
The SPARK process language provides a hierarchical 
representation of processes. A library of procedures 
provides declarative representations of activities for 
responding to events and for decomposing complex tasks 
into simpler tasks. Each procedure has a precondition 
stating conditions under which it can be applied, and a task 
network expression describing how to respond to an event 
or to decompose a non-primitive action. The hierarchical 
decomposition of tasks bottoms out in primitive actions 
that bring about some change in the outside world or the 
internal state of the agent. A SPARK agent specification 
includes declarations of predicate and task symbols, facts 
about the initial state, and a library of procedures. The key 
syntactic structures include term expressions, logical 
expressions, actions, task expressions, and procedures. 
 
A term expression represents a value. Atomic term 
expressions are constants such as 42 and "Hi", and  
variables of the form $x. These are combined to form 
compound term expressions, including lists such as [1 2 
3]. 
 
Logical expressions are constructed from predicate (fluent) 
symbols applied to term expressions, e.g., (= 1 $x), 
(True), logical operators, and quantifiers. These 
expressions can be used to alter the flow of execution or to 
bind variables for use later in the procedure. 
 
An action is constructed from an action symbol and term 
expressions as parameters, for example, (laptop_query 
$criteria $quotes). The action may be primitive, 
which is performed by executing some procedural 
attachment, or nonprimitive, which is hierarchically 
expanded into subtasks using procedures. The parameters 
of an action may include free variables that are not bound 
at the time the action is attempted. These variables are 
bound by the successful execution of the action and 
provide a means of returning values from executing the 
action.  
 
A task network expression is a pattern of activity that when 
attempted may either succeed or fail. Task network 
expressions include such constructs as 

 
[set: V  T] - Set variable V to the value T. 
[do: A ] – Perform action A. 
[seq: N1 N2 … ] – Attempt task networks N1, N2, … 
sequentially. 
[parallel: N1 N2 … ] – Attempt task networks N1, N2, 
… in parallel. 
[select: P1 N1 P2 N2 … ] – Execute the task expression 
Ni corresponding to the first logical expression Pi that has 
a solution. Fail if none has a solution. 
[wait: P1 N1 P2 N2 … ] – As select, but wait instead of 
failing. 
[while: P N] – While P has a solution execute N. 
 
At its simplest, a SPARK procedure has the form  
{defprocedure name cue: trigger precondition: P 
body: N} 
 
This indicates that if P is true when trigger occurs, then 
executing N  is a valid way of responding. The cue may be 
of the form [newfact: P] to respond to the fact P being 
added to the KB, or [do: A] to expand the action A. 
 
For example, the following procedure, Get_Bid, describes 
one way of expanding the task of performing action 
find_bids. It is applicable if the condition (Online 
"DM4QR") holds. It performs a laptop_query action that 
binds variable $temp_quotes and then depending upon 
whether or not this list is empty, either performs 
relax_and_redo_query, binding  $quotes, or binds 
$quotes to $temp_quotes. 
 
{defprocedure Get_Bid 
  cue:  
   [do: (find_bids $item $criteria $quotes)] 
  precondition: (Online "DM4QR") 
  body: 
  [seq: 
    [do: (laptop_query $criteria 
                              $temp_quotes)] 
    [select: 
      (=  $temp_quotes []) 
        [do: (relax_and_redo_query $criteria 
                                   $quotes)] 
      (True) 
        [set: $quotes $temp_quotes]]]} 

SPARK Process Execution 
Figure 1 shows the architecture of each SPARK agent. 
Each agent is embedded in the world and interacts with the 
world though sensors and effectors. Each agent has its own 
knowledge base of beliefs and library of procedures. The 
initial state of the beliefs and procedure library are initially 
loaded from files written in the SPARK language. The 
beliefs are updated by the agent's sensors and through the 
agent executing procedures. The set of procedure instances 
that the agent is executing at a given time form the 
intentions of the agent. At any time an agent may be 
executing multiple intentions. At SPARK's core is the 



executor whose role is to manage the execution of 
intentions. The executor can post procedure subtasks as 
actions. Primitive actions cause effects through the 
effectors. Non-primitive actions are expanded by the 
executor according to the procedures the agent has 
available. 
 

 
 
 
 
SPARK process execution proceeds as follows: (1) 
Sensors update the agents beliefs. (2) These belief changes 
trigger the instantiation of procedures  - those with a cue 
that matches the event and a precondition that is satisfied 
with respect to the agent’s beliefs. (3) A subset of these 
applicable procedures is selected to be added to the 
intentions. (4) The executor selects one intended procedure 
instance to progress by executing a single step. (5) This 
may cause updates to the beliefs or the posting of new 
subtasks. (6,2) This in turn triggers the instantiation of 
procedures, and so on. 
 
The step by step execution of each procedure instance 
results in the binding of values to variables in the 
procedure instance. Each predicate that is tested or action 
that is executed results in all free variables becoming 
bound. Usually when a logical expression (such as may 
appear in a context: or select: task network expression) is 
tested, SPARK needs to commit to a single solution 
without the possibility of backtracking. 
 
The approach that SPARK and many other BDI agent 
systems take to the hierarchical expansion of tasks is based 
on an expectation that the agent is working in a highly 
dynamic environment: the expansion of tasks is performed 
at the time the task is to be executed and the choice of the 
procedure to use is based on the current state of the agents 
beliefs. BDI agent systems have been integrated with 
planning systems (e.g., [Myers 99, Lemai and Ingrande 
04]) however SPARK currently has no planning 
component. 
 

 
Reasoning Requirements 

We consider here the reasoning requirements for three 
applications, and how introspection on the process model 
itself is necessary to support them:  (1) dialog 
interpretation, (2) question answering, (3) explanation 
generation. 

Reasoning Requirements for Dialog Interpretation 
Robust language processing is challenging in that what the 
user says can be ambiguous, incomplete, and erroneous. In 
the context of the CALO system that we are developing, 
one class of dialogs (between the user and computer) that 
we have been studying is "purchase dialogs", where the 
user is directing CALO to purchase an item on the user’s 
behalf. In these dialogs, these problems can all occur, and 
resolution of them requires the system to have strong 
expectations, hence requiring knowledge of the processes 
themselves. 
 
For example, while instructing CALO to buy a computer, 
if the user says "Find me an appropriate machine", the user 
actually means "You have authorization to start retrieving 
quotes from vendors for the laptop I want to purchase" (as 
opposed to, for example, start physically searching the 
building to find machines). To find the correct 
interpretation, CALO needs to have strong expectations 
about what sort of activities may occur in the future, and 
then match the user's utterance with those expectations. In 
this case, CALO contains a process model of how to 
purchase items, and as this process model is currently 
active (triggered by earlier statements by the user, such as 
"I want to purchase a laptop"), CALO should be able to 
look at future steps that could be construed as "finding a 
machine" to identify what the user is referring to. In this 
case, a subsequent step in the process is to retrieve quotes 
for the to-be-purchased computer, and a matching 
algorithm can identify this as the most likely thing to 
which the user is referring [Yeh et al. 03]. To do this, the 
system needs to introspect on its general purchase plan 
(procedure), to identify that a future step that can be 
construed as "finding" will occur. 

Reasoning Requirements for Question Answering 
As a general-purpose assistant, CALO is expected to field 
answers to a wide variety of questions from a user, 
including about its (CALO's) own knowledge of how to do 
things. While SPARK's execution trace API allows CALO 
to answer questions about specific things it has done (e.g., 
"When you purchased the laptop, did you request 
authorization?"), CALO also needs knowledge of the 
procedural flow chart itself for more general questions 
about procedures, for example,  
 

1. How do you purchase a laptop? 

Figure 1: The Architecture of each SPARK agent. 



2. Will you need to access to the Web during the 
purchase? 

3. Is authorization required [i.e., is there an 
authorization step] to purchase a laptop over 
$2000? 

4. What will happen if the authorizing manager is 
unavailable? 

5. Email the quotes you find to my home email 
address. 

6. Get authorization from Joe, not Steve. 
 
The first four of these questions are independent of any 
specific execution of the procedure, and necessarily 
require access to the general procedure itself to answer the 
questions. The last two questions are in the context of a 
partially executed procedure, in which the user is making 
reference to a to-be-executed future step. Again with these 
two questions, the system needs a representation of the 
general procedure to identify the future step to which the 
user is referring  (these are not in the execution trace, as 
they have not yet happened). 

Requirements for Supporting Explanation 
In a related piece of work reported elsewhere, we are 
working on explaining processes. Answering "why" 
questions particularly requires introspecting not just on 
what happened, but the specific tests and conditions that 
caused those things to happen, a particular form of meta-
reasoning. Again, knowledge of the structure of the 
process flow chart is often required to answer these 
questions, including details of tests directing flow of 
execution at branch points, and details of how earlier steps 
support later steps. (In its current form PPL does not 
capture all this knowledge, but it is a step toward this.) 
Example questions from the user to CALO include 
 

1. Why didn't you ask for authorization? 
2. Why did you send the purchase request to Dallas? 
3. Why haven't you started searching yet? 

Portable Process Language (PPL) 

Overview 
To meet the reasoning requirements already identified, we 
must be able to introspect SPARK processes to obtain 
information as follows: What tasks are involved in task X? 
What task comes after task Y? Might task Z occur in 
process W?  The goal of the Portable Process Language 
(PPL) is to represent just this kind of "flow chart" 
information. PPL captures a filtered view of the SPARK 
process models to include tasks, subtasks, task parameters, 
and task ordering.  It does not currently capture the 
semantics of conditional tests, context, and other logical 
evaluations. Such extensions can be added in the future. 
 

We now describe PPL, and then describe how it 
complements PSL (Process Specification Language), a 
language that captures the semantics but not the explicit 
structure of a process flow chart.  
 
Consider a toy example of a two-step process—namely, 
going to work—with a trivial two-step flow chart 
consisting of (i) entering a car and then (ii) driving the car 
to work: 
 
 
 
 
 
 
 
 
 
 
 
The PPL for a skolem instance process is follows: 
 

;;; Steps in the flow chart 
(instance-of goto-work1 goto-work-step) 
(instance-of enter1 enter-step) 
(instance-of drive1 drive-step) 
 
(possibleTask goto-work1 enter1) 
(possibleTask goto-work1 drive1) 
(followedBy enter1 drive1) 
 
;;; Parameters to those steps 
(instance-of person1 person-var) 
(instance-of car1 car-var) 
 
(agent goto-work1 person1) 
(object goto-work1 car1) 
 
(agent enter1 person1) 
(object enter1 car1) 
 
(agent enter1 person1) 
(object drive1 car1) 
 

 
In PPL, each of the steps in the flow chart is denoted by a 
specific individual. Note that these individuals are not 
instances of events in the world (e.g., the specific event of 
entering the car at a certain time); rather, they are instances 
of steps in a flow chart. Similarly, each parameter (e.g., the 
person, the car) for a flow chart step is denoted by a 
specific individual. Again, note that these individuals are 
not instances of objects in the world (e.g., a specific person 
or car); rather, they are instances of parameters (variables) 
in the flow chart. In other words, PPL is a somewhat literal 
logical depiction of flow chart steps, rather than of event 
sequences. We can relate flow chart steps to event types 

Goto Work

Enter Drivethen 
substeps 

Person Car
agent 

agent 
object

object



(classes), and flow chart parameters to object types 
(classes), with some simple correspondence statements: 
 

(event-type-for goto-work-step goto-work) 
(event-type-for enter-step          enter) 
(event-type-for drive-step         drive) 
(object-type-for person-var       person) 
(object-type-for car-var             car) 

 
where goto-work, enter, drive are types (classes) of actual 
events in the world, and person, car are types (classes) of 
actual objects in the world. 
 
Given a PPL flow chart, in principle one could "execute" it 
to perform the plan it denotes. However, the AI planning 
community has long matured beyond these kinds of "toy" 
executions—in the real world, plan execution also involves 
plan monitoring, recovery in the case of failure, 
consideration of time and resource constraints, and so on. 
To adequately represent such executable processes, much 
richer languages are needed, and this is precisely the role 
of SPARK. Rather, one should view PPL as capturing a 
simple abstraction of a complex executable process, in a 
language-neutral form suitable for introspection, to support 
the kinds of tasks discussed earlier.  
 
For contrast, a simple SPARK representation of the above 
procedure would be 
 
{defprocedure Goto_Work_by_Car 
  cue: [do: (goto_work $person $car)] 
  precondition: (True) 
  body: 
  [seq: [do: (enter $person $car)] 
        [do: (drive $person $car)]]} 

 
While suitable for execution, this syntactic structure is 
more difficult to manipulate for introspection. Note also 
that some information in this SPARK representation is 
implicit: PPL makes explicit the step ordering (implicit in 
the ordering of lines of SPARK-L representation) and step-
substep relations (implicit in the grouping of tasks within a 
single procedure in SPARK-L). This allows other tools 
easy access to the process itself. 

Conditionals 
PPL denotes conditional branches in a flow chart using a 
predicate 
 

(conditionalFollowedBy <step> <test> <next-step>) 
 
meaning that if execution is at <step>, and <test> evaluates 
to true, then the next step will be <next-step>. At present, 
<test> is the opaque (quoted) logical expression copied 
from the SPARK-L test itself, but our plan is to replace 
this with a transparent logical expression, whose variables 
include the parameter instances in the rest of the PPL. For 
example, from the SPARK procedure for purchasing a 

laptop, the step "relax-and-redo" follows "laptop-query" 
only if no quotes were found. This appears in PPL as 
 

(conditionalFollowedBy laptop-query1  
          (and "(= $temp_quotes [])") 
          relax-and-redo1) 

 
This allows the external systems to see that relax-and-
redo1 is a possible next step in the plan, but not at present 
to understand details of conditions under which it will be 
executed (unless it was to parse the quoted logical 
expressions). 

Additional Representational Properties 
While it is not our intention that PPL capture the full 
details of the original SPARK process models, it is clear 
that there are additional details that should be captured. 
These include preconditions, "cue" conditions, and better 
handling of logical assertions and tests in the original 
SPARK. These are all items for future work. 

How PPL is Generated 
The PPL is generated by introducing specific individual 
names for each variable, for the cue task, and for each 
atomic step, such as [do: A] in the procedure. SPARK 
action symbols, such as enter, become event types. Type 
and role declarations for the actions are translated into 
object type statements and role statements. Thus, for an 
action enter with parameter roles agent of type person and 
object of type car, we translate 
 

[do: (enter $person $car)] 
into 
 

(instance-of enter1 enter-step) 
(event-type-for enter-step enter) 
(agent enter1 person1) 
(instance-of person1 person-var) 
(object-type-for person-var person) 
(instance-of car1 car-var) 
(object-type-for car-var car) 
(object enter1 car1) 
 

Each of the specific individuals corresponding to the 
atomic steps is related to the individual corresponding to 
the cue by possibleTask. These tasks are considered only 
“possible” because conditional branching or unexpected 
failures may prevent the tasks from being attempted: 
 

(possibleTask goto-work1 enter1) 
 
Of more interest is the ordering relationship between the 
atomic steps, represented by the followedBy and 
conditionalFollowedBy predicates. Determining this 
relationship requires walking over the body task network 
expression, and keeping track of all the possible prior 



atomic steps and the sequences of conditions that must be 
satisfied for the current step to follow each of these. We 
have to consider multiple prior atomic steps when 
considering a step following a parallel or select construct. 
An atomic step following a context construct or within a 
select or wait will be executed only if the appropriate 
conditions holds, and there may be multiple conditions 
between the execution of one atomic step and another. To 
translate iterative constructs, we need to introduce “null” 
tasks to link the start and end of the loop. 
 
For simplicity, we have ignored the possibility of 
alternative procedures for the same action. However, this 
can be represented by making each procedure a subtype of 
the event type for the action, and the making the cue an 
instance of a step of that subtype. 

PPL and other Languages 

PPL and PSL 
A well-known standard for process representations is the 
Process Specification Language (PSL) [Gruninger 04], a 
logic-based standard for capturing the semantics of 
processes. 
PPL is intended as a complement to, rather than competitor 
of, PSL, as it captures process knowledge in a different 
way. The most significant difference between PPL and 
PSL is that PSL's representation of the ordering of steps is 
in terms of actual events ("activity occurrences"), while 
PPL orders the abstract flow chart steps ("activities") 
themselves. For example, in PSL the above toy plan for 
going to work would be 
 
% enter is a subactivity of going to work 
(forall (?person ?car) 
 (subactivity (goto-work ?person ?car) 
                   (enter ?person ?car))) 
 
% driving is a subactivity of going to work 
(forall (?person ?car) 
 (subactivity (goto-work ?person ?car) 
                   (drive ?person ?car))) 
 
% In all occurrences of going to work, a driving 
occurrence 
% follows a entering occurrence. 
(forall (?occ ?person ?car) 
  (implies (occurrence_of ?occ (goto-work ?person ?car)) 
    (exists (?occ1 ?occ2) 
       (and (occurrence_of ?occ1 (enter ?person ?car)) 
        (occurrence_of ?occ2 (drive ?person ?car)) 
        (subactivity_occurrence_of ?occ1 ?occ) 
        (subactivity_occurrence_of ?occ2 ?occ) 
        (successor ?occ1 ?occ2))))) 
 

The last axiom states that for all occurrences of going to 
work, there will be an occurrence of entering followed by 
an occurrence of driving. While this makes the semantics 
of the original flow chart explicit, the actual structure of 
the flow chart has been lost (the simple relationship “enter 
→ drive” is expressed as a complex quantified logical 
expression). 
 
In principle one could perhaps recover the original flow 
chart by reverse-engineering it from these PSL axioms, 
either by parsing the axioms themselves1 or by theorem 
proving the general relationships (e.g., proving that driving 
always follows entering in goto-work). However, neither 
of these options is particularly easy. In contrast, our goal 
with PPL is to preserve the original flow chart structure so 
that it is directly accessible for other agents. One could 
imagine extending PSL to include some predicate 
"macros" that would allow the general flow chart 
relationships to be made explicit, and which would also 
expand to the traditional PSL axioms such as those shown 
above. Conversely, PSL makes explicit the actual 
semantics of the flow chart, and PSL could be generated 
from PPL if one wanted to make these semantics explicit 
(indeed, PPL could be a “straw man” candidate for such 
PSL “macros”).  

PPL and OWL-S 
OWL-S is a OWL-based Web service ontology, which 
supplies Web service providers with a core set of markup 
language constructs for describing the properties and 
capabilities of their Web services in an unambiguous, 
computer-interpretable form. Like PPL, OWL-S represents 
generic procedures themselves, and similarly uses 
individuals to denote process objects and parameters used 
by those processes (In this sense, PPL is more similar to 
OWL-S in approach than to PSL). Generally speaking, 
OWL-S process is not a program to be executed. It is a 
specification of the ways a client may interact with a 
service. A process can generate and return some new 
information based on information it is given and the world 
state, or it can produce a change in the world. This 
transition is described by the preconditions and effects of 
the process.  Processes can be atomic or composite.  The 
composite processes may have control structure such as 
sequence, parallel, split, join, if-then-else, etc.  
 
Clearly, the scope and the applicability of OWL-S is much 
different from either SPARK-L or PPL.  In terms of 
expressiveness, OWL-S is comparable to SPARK-L as 
both are expressive process description languages.  OWL-
S, PPL, and SPARK-L all use similar representations for 
                                                 
1 Mike Gruninger reports that a group has done this for a 
database application, but that this relies on an assumed 
syntactic regularity in the axioms in order to make parsing 
feasible [personal communication]. 



inputs, outputs, and results.  Over and above this shared 
core, PPL provides a representation for the control 
structure in a process by using the followedBy relation.  
The current design of PPL is limited to just that. PPL is a 
subset of SPARK-L designed to support the requirements 
of reasoning applications.  If one were to perform a similar 
reasoning over OWL-S processes, a PPL-like subset will 
need to be identified in order to avoid the potential overkill 
of using OWL-S in its entirety. In a similar vein, PPL has a 
simple KIF-like syntax, intended to be easily generated 
and processed by sending/receiving applications, both 
abstracting out some details and making some implicit 
semantics of SPARK-L explicit (e.g., event ordering). In 
contrast, OWL-S is specifically designed to support Web-
based services, and hence uses an RDF-based syntax, 
clearly appropriate for Web-based applications but 
possibly more cumbersome to deal with in the wider 
context of process communication. Conversely, OWL-S 
(and similarly BPEL4WS, the Business Process Execution 
Language for Web Services) has gone further than PPL in 
defining different types of process ordering and 
parallelism. Some of these constructs would be useful to 
incorporate in PPL as it matures. 

Experience Using PPL 
PPL directly represents the steps in a procedure, the 
parameters of those steps, and their ordering.  This 
representation allows a user's ambiguous utterances (e.g., 
”find me”) to be matched against expected tasks in the 
procedure (e.g., ‘‘find_computer”)  to identify the user's 
intent. 
 
We have implemented a translator from the SPARK 
representation language to PPL. Using this translator, we 
exported SPARK process models.  Using the exported 
process model, we ran a suite of tests on a dialog 
interpretation module, and for answering questions. In both 
cases, the system was able to resolve the user's utterances 
correctly in a simple, scripted dialog, illustrating proof of 
concept. Obviously, this is only a first step, but the 
demonstrated feasibility of the mechanism is encouraging. 

Future Plans 
The work we have reported here is just an initial attempt at 
developing a representation that will bridge the 
requirements of executing a process, and being able to 
answer questions about it.  Clearly, more work needs to be 
done.  First, the language needs to be extended to capture a 
larger subset of SPARK-L representation.  The current 
PPL ignores many of the details of a process model, for 
example, the conditions.  Second, we would also like to 
use PPL for specifying and/or modifying existing 
processes, e.g., through interaction with the user. This 
latter goal requires reversing the information flow so that 

PPL is used to generate SPARK-L, rather than the reverse. 
Currently PPL is too impoverished to support this, but with 
some small extensions this should be possible, so that 
either the PPL contains enough information to 
generate/modify a SPARK process, or suitable software 
can be written to “fill in the gaps” appropriately (and 
perhaps interactively) when passing information back to 
the execution environment. 
 
Although PPL is still preliminary, the general idea of 
distinguishing representations for execution and 
representations for introspective reasoning has proved 
fruitful in our work, and one which we believe will 
continue to have value as our project progresses further. 
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