
A Portable Process Language

Peter E. Clark1, David Morley2, Vinay K. Chaudhri2, Karen L. Myers2

1
M&CT, Boeing Phantom Works, PO Box 3707, Seattle, WA 98124

2
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025

peter.e.clark@boeing.com, {morley,chaudhri,myers}@ai.sri.com

Abstract
Process representation languages designed to support execution
have evolved to support specialized reasoning capabilities like
action selection and task decomposition, but do not readily
support inferences that one might need for explanation or
question answering. In this paper, we report on a process
language, PPL, that we have designed to serve as a bridge
between a representation designed for execution and a
representation designed for applications such as question
answering and explanation generation. Through its use of a
propositional-style representation of process structure, PPL can
enable the use of generalized reasoning methods for those
purposes. PPL is novel in that it directly encodes the process
"flow chart" in a neutral, KIF-like syntax, allowing other modules
to introspect on the process structure.

Introduction
SPARK (SRI Procedural Agent Realization Toolkit)
[Morley and Myers 04] is an agent framework that builds
on a Belief-Desire-Intention (BDI) model of rationality.
SPARK provides a flexible plan execution mechanism that
interleaves goal-directed activity and reactivity to changes
in its execution environment. SPARK's procedural
language has a clear, well-defined formal semantics that
can support reasoning techniques for procedure validation,
synthesis, and repair. The SPARK representation language
(called SPARK-L) is an extended form of Hierarchical
Task Network (HTN) representation [Erol et al. 04].
Extensions beyond standard HTN include iteration,
conditional branching, and certain runtime-specialized
constructs (WAIT, TRY).

SPARK includes a comprehensive API for monitoring
executing procedures—called procedure instances—
allowing external modules to view the "trace" of a
procedure's execution. For example, by using this API an
external module can find the specific task(s) currently
being executed, and trace back to find specific previously
executed tasks and their details. However, while allowing
access to how a general procedure is playing out, this API
does not allow access to the general "flow chart" of the
procedure itself, for example, to find possible future tasks,
choice points, cycles, and alternative ways the procedure

may play out. However, many tasks require that a system
be able to introspect on its own general procedures, in
particular language understanding, question answering,
and explanation. This has been particularly true in the
context of CALO, an integrated cognitive assistant.1 As a
result, we have enhanced SPARK with a second API
allowing it to export (an abstraction of) its general
procedures also. These exported procedures are expressed
in logic in Portable Process Language (PPL), a language
we have designed for this purpose, complementing
SPARK-L, the native process language of SPARK. The
goals of PPL are to make explicit the steps, their
arguments, and their relationships in the procedures, and to
abstract away some of the details critical for execution but
not needed for introspection.

As a close analogy, consider a system wanting to
introspect on a piece of software, but only having an API
to the trace of that software executing. The system could,
of course, literally try to parse the source code
representation of the software and try to work out what it
did (in fact, some software analysis tools do exactly this),
but this requires the system to have a complete internal
model of the programming language, both syntax and
semantics. Instead, it would be nice if the software could
export a high-level summary of its behavior—literally, a
flow-chart-like data structure—that other systems could

1 See http://www.ai.sri.com/project/CALO

then manipulate, expressed in some relatively
implementation-independent language. Our goal is that
PPL be such a language, in the specific context of SPARK-
like planning systems.

In this paper, we describe a simplified version of the
SPARK language and how it is executed, the reasoning
requirements, PPL, and experiences in using the language
in the context of an agent system. We conclude with
directions for future work.

Description of SPARK Process Language
The SPARK process language provides a hierarchical
representation of processes. A library of procedures
provides declarative representations of activities for
responding to events and for decomposing complex tasks
into simpler tasks. Each procedure has a precondition
stating conditions under which it can be applied, and a task
network expression describing how to respond to an event
or to decompose a non-primitive action. The hierarchical
decomposition of tasks bottoms out in primitive actions
that bring about some change in the outside world or the
internal state of the agent. A SPARK agent specification
includes declarations of predicate and task symbols, facts
about the initial state, and a library of procedures. The key
syntactic structures include term expressions, logical
expressions, actions, task expressions, and procedures.

A term expression represents a value. Atomic term
expressions are constants such as 42 and "Hi", and
variables of the form $x. These are combined to form
compound term expressions, including lists such as [1 2
3].

Logical expressions are constructed from predicate (fluent)
symbols applied to term expressions, e.g., (= 1 $x),
(True), logical operators, and quantifiers. These
expressions can be used to alter the flow of execution or to
bind variables for use later in the procedure.

An action is constructed from an action symbol and term
expressions as parameters, for example, (laptop_query
$criteria $quotes). The action may be primitive,
which is performed by executing some procedural
attachment, or nonprimitive, which is hierarchically
expanded into subtasks using procedures. The parameters
of an action may include free variables that are not bound
at the time the action is attempted. These variables are
bound by the successful execution of the action and
provide a means of returning values from executing the
action.

A task network expression is a pattern of activity that when
attempted may either succeed or fail. Task network
expressions include such constructs as

[set: V T] - Set variable V to the value T.
[do: A] – Perform action A.
[seq: N1 N2 …] – Attempt task networks N1, N2, …
sequentially.
[parallel: N1 N2 …] – Attempt task networks N1, N2,
… in parallel.
[select: P1 N1 P2 N2 …] – Execute the task expression
Ni corresponding to the first logical expression Pi that has
a solution. Fail if none has a solution.
[wait: P1 N1 P2 N2 …] – As select, but wait instead of
failing.
[while: P N] – While P has a solution execute N.

At its simplest, a SPARK procedure has the form
{defprocedure name cue: trigger precondition: P
body: N}

This indicates that if P is true when trigger occurs, then
executing N is a valid way of responding. The cue may be
of the form [newfact: P] to respond to the fact P being
added to the KB, or [do: A] to expand the action A.

For example, the following procedure, Get_Bid, describes
one way of expanding the task of performing action
find_bids. It is applicable if the condition (Online
"DM4QR") holds. It performs a laptop_query action that
binds variable $temp_quotes and then depending upon
whether or not this list is empty, either performs
relax_and_redo_query, binding $quotes, or binds
$quotes to $temp_quotes.

{defprocedure Get_Bid
 cue:
 [do: (find_bids $item $criteria $quotes)]
 precondition: (Online "DM4QR")
 body:
 [seq:
 [do: (laptop_query $criteria
 $temp_quotes)]
 [select:
 (= $temp_quotes [])
 [do: (relax_and_redo_query $criteria
 $quotes)]
 (True)
 [set: $quotes $temp_quotes]]]}

SPARK Process Execution
Figure 1 shows the architecture of each SPARK agent.
Each agent is embedded in the world and interacts with the
world though sensors and effectors. Each agent has its own
knowledge base of beliefs and library of procedures. The
initial state of the beliefs and procedure library are initially
loaded from files written in the SPARK language. The
beliefs are updated by the agent's sensors and through the
agent executing procedures. The set of procedure instances
that the agent is executing at a given time form the
intentions of the agent. At any time an agent may be
executing multiple intentions. At SPARK's core is the

executor whose role is to manage the execution of
intentions. The executor can post procedure subtasks as
actions. Primitive actions cause effects through the
effectors. Non-primitive actions are expanded by the
executor according to the procedures the agent has
available.

SPARK process execution proceeds as follows: (1)
Sensors update the agents beliefs. (2) These belief changes
trigger the instantiation of procedures - those with a cue
that matches the event and a precondition that is satisfied
with respect to the agent’s beliefs. (3) A subset of these
applicable procedures is selected to be added to the
intentions. (4) The executor selects one intended procedure
instance to progress by executing a single step. (5) This
may cause updates to the beliefs or the posting of new
subtasks. (6,2) This in turn triggers the instantiation of
procedures, and so on.

The step by step execution of each procedure instance
results in the binding of values to variables in the
procedure instance. Each predicate that is tested or action
that is executed results in all free variables becoming
bound. Usually when a logical expression (such as may
appear in a context: or select: task network expression) is
tested, SPARK needs to commit to a single solution
without the possibility of backtracking.

The approach that SPARK and many other BDI agent
systems take to the hierarchical expansion of tasks is based
on an expectation that the agent is working in a highly
dynamic environment: the expansion of tasks is performed
at the time the task is to be executed and the choice of the
procedure to use is based on the current state of the agents
beliefs. BDI agent systems have been integrated with
planning systems (e.g., [Myers 99, Lemai and Ingrande
04]) however SPARK currently has no planning
component.

Reasoning Requirements

We consider here the reasoning requirements for three
applications, and how introspection on the process model
itself is necessary to support them: (1) dialog
interpretation, (2) question answering, (3) explanation
generation.

Reasoning Requirements for Dialog Interpretation
Robust language processing is challenging in that what the
user says can be ambiguous, incomplete, and erroneous. In
the context of the CALO system that we are developing,
one class of dialogs (between the user and computer) that
we have been studying is "purchase dialogs", where the
user is directing CALO to purchase an item on the user’s
behalf. In these dialogs, these problems can all occur, and
resolution of them requires the system to have strong
expectations, hence requiring knowledge of the processes
themselves.

For example, while instructing CALO to buy a computer,
if the user says "Find me an appropriate machine", the user
actually means "You have authorization to start retrieving
quotes from vendors for the laptop I want to purchase" (as
opposed to, for example, start physically searching the
building to find machines). To find the correct
interpretation, CALO needs to have strong expectations
about what sort of activities may occur in the future, and
then match the user's utterance with those expectations. In
this case, CALO contains a process model of how to
purchase items, and as this process model is currently
active (triggered by earlier statements by the user, such as
"I want to purchase a laptop"), CALO should be able to
look at future steps that could be construed as "finding a
machine" to identify what the user is referring to. In this
case, a subsequent step in the process is to retrieve quotes
for the to-be-purchased computer, and a matching
algorithm can identify this as the most likely thing to
which the user is referring [Yeh et al. 03]. To do this, the
system needs to introspect on its general purchase plan
(procedure), to identify that a future step that can be
construed as "finding" will occur.

Reasoning Requirements for Question Answering
As a general-purpose assistant, CALO is expected to field
answers to a wide variety of questions from a user,
including about its (CALO's) own knowledge of how to do
things. While SPARK's execution trace API allows CALO
to answer questions about specific things it has done (e.g.,
"When you purchased the laptop, did you request
authorization?"), CALO also needs knowledge of the
procedural flow chart itself for more general questions
about procedures, for example,

1. How do you purchase a laptop?

Figure 1: The Architecture of each SPARK agent.

2. Will you need to access to the Web during the
purchase?

3. Is authorization required [i.e., is there an
authorization step] to purchase a laptop over
$2000?

4. What will happen if the authorizing manager is
unavailable?

5. Email the quotes you find to my home email
address.

6. Get authorization from Joe, not Steve.

The first four of these questions are independent of any
specific execution of the procedure, and necessarily
require access to the general procedure itself to answer the
questions. The last two questions are in the context of a
partially executed procedure, in which the user is making
reference to a to-be-executed future step. Again with these
two questions, the system needs a representation of the
general procedure to identify the future step to which the
user is referring (these are not in the execution trace, as
they have not yet happened).

Requirements for Supporting Explanation
In a related piece of work reported elsewhere, we are
working on explaining processes. Answering "why"
questions particularly requires introspecting not just on
what happened, but the specific tests and conditions that
caused those things to happen, a particular form of meta-
reasoning. Again, knowledge of the structure of the
process flow chart is often required to answer these
questions, including details of tests directing flow of
execution at branch points, and details of how earlier steps
support later steps. (In its current form PPL does not
capture all this knowledge, but it is a step toward this.)
Example questions from the user to CALO include

1. Why didn't you ask for authorization?
2. Why did you send the purchase request to Dallas?
3. Why haven't you started searching yet?

Portable Process Language (PPL)

Overview
To meet the reasoning requirements already identified, we
must be able to introspect SPARK processes to obtain
information as follows: What tasks are involved in task X?
What task comes after task Y? Might task Z occur in
process W? The goal of the Portable Process Language
(PPL) is to represent just this kind of "flow chart"
information. PPL captures a filtered view of the SPARK
process models to include tasks, subtasks, task parameters,
and task ordering. It does not currently capture the
semantics of conditional tests, context, and other logical
evaluations. Such extensions can be added in the future.

We now describe PPL, and then describe how it
complements PSL (Process Specification Language), a
language that captures the semantics but not the explicit
structure of a process flow chart.

Consider a toy example of a two-step process—namely,
going to work—with a trivial two-step flow chart
consisting of (i) entering a car and then (ii) driving the car
to work:

The PPL for a skolem instance process is follows:

;;; Steps in the flow chart
(instance-of goto-work1 goto-work-step)
(instance-of enter1 enter-step)
(instance-of drive1 drive-step)

(possibleTask goto-work1 enter1)
(possibleTask goto-work1 drive1)
(followedBy enter1 drive1)

;;; Parameters to those steps
(instance-of person1 person-var)
(instance-of car1 car-var)

(agent goto-work1 person1)
(object goto-work1 car1)

(agent enter1 person1)
(object enter1 car1)

(agent enter1 person1)
(object drive1 car1)

In PPL, each of the steps in the flow chart is denoted by a
specific individual. Note that these individuals are not
instances of events in the world (e.g., the specific event of
entering the car at a certain time); rather, they are instances
of steps in a flow chart. Similarly, each parameter (e.g., the
person, the car) for a flow chart step is denoted by a
specific individual. Again, note that these individuals are
not instances of objects in the world (e.g., a specific person
or car); rather, they are instances of parameters (variables)
in the flow chart. In other words, PPL is a somewhat literal
logical depiction of flow chart steps, rather than of event
sequences. We can relate flow chart steps to event types

Goto Work

Enter Drivethen
substeps

Person Car
agent

agent
object

object

(classes), and flow chart parameters to object types
(classes), with some simple correspondence statements:

(event-type-for goto-work-step goto-work)
(event-type-for enter-step enter)
(event-type-for drive-step drive)
(object-type-for person-var person)
(object-type-for car-var car)

where goto-work, enter, drive are types (classes) of actual
events in the world, and person, car are types (classes) of
actual objects in the world.

Given a PPL flow chart, in principle one could "execute" it
to perform the plan it denotes. However, the AI planning
community has long matured beyond these kinds of "toy"
executions—in the real world, plan execution also involves
plan monitoring, recovery in the case of failure,
consideration of time and resource constraints, and so on.
To adequately represent such executable processes, much
richer languages are needed, and this is precisely the role
of SPARK. Rather, one should view PPL as capturing a
simple abstraction of a complex executable process, in a
language-neutral form suitable for introspection, to support
the kinds of tasks discussed earlier.

For contrast, a simple SPARK representation of the above
procedure would be

{defprocedure Goto_Work_by_Car
 cue: [do: (goto_work $person $car)]
 precondition: (True)
 body:
 [seq: [do: (enter $person $car)]
 [do: (drive $person $car)]]}

While suitable for execution, this syntactic structure is
more difficult to manipulate for introspection. Note also
that some information in this SPARK representation is
implicit: PPL makes explicit the step ordering (implicit in
the ordering of lines of SPARK-L representation) and step-
substep relations (implicit in the grouping of tasks within a
single procedure in SPARK-L). This allows other tools
easy access to the process itself.

Conditionals
PPL denotes conditional branches in a flow chart using a
predicate

(conditionalFollowedBy <step> <test> <next-step>)

meaning that if execution is at <step>, and <test> evaluates
to true, then the next step will be <next-step>. At present,
<test> is the opaque (quoted) logical expression copied
from the SPARK-L test itself, but our plan is to replace
this with a transparent logical expression, whose variables
include the parameter instances in the rest of the PPL. For
example, from the SPARK procedure for purchasing a

laptop, the step "relax-and-redo" follows "laptop-query"
only if no quotes were found. This appears in PPL as

(conditionalFollowedBy laptop-query1
 (and "(= $temp_quotes [])")
 relax-and-redo1)

This allows the external systems to see that relax-and-
redo1 is a possible next step in the plan, but not at present
to understand details of conditions under which it will be
executed (unless it was to parse the quoted logical
expressions).

Additional Representational Properties
While it is not our intention that PPL capture the full
details of the original SPARK process models, it is clear
that there are additional details that should be captured.
These include preconditions, "cue" conditions, and better
handling of logical assertions and tests in the original
SPARK. These are all items for future work.

How PPL is Generated
The PPL is generated by introducing specific individual
names for each variable, for the cue task, and for each
atomic step, such as [do: A] in the procedure. SPARK
action symbols, such as enter, become event types. Type
and role declarations for the actions are translated into
object type statements and role statements. Thus, for an
action enter with parameter roles agent of type person and
object of type car, we translate

[do: (enter $person $car)]
into

(instance-of enter1 enter-step)
(event-type-for enter-step enter)
(agent enter1 person1)
(instance-of person1 person-var)
(object-type-for person-var person)
(instance-of car1 car-var)
(object-type-for car-var car)
(object enter1 car1)

Each of the specific individuals corresponding to the
atomic steps is related to the individual corresponding to
the cue by possibleTask. These tasks are considered only
“possible” because conditional branching or unexpected
failures may prevent the tasks from being attempted:

(possibleTask goto-work1 enter1)

Of more interest is the ordering relationship between the
atomic steps, represented by the followedBy and
conditionalFollowedBy predicates. Determining this
relationship requires walking over the body task network
expression, and keeping track of all the possible prior

atomic steps and the sequences of conditions that must be
satisfied for the current step to follow each of these. We
have to consider multiple prior atomic steps when
considering a step following a parallel or select construct.
An atomic step following a context construct or within a
select or wait will be executed only if the appropriate
conditions holds, and there may be multiple conditions
between the execution of one atomic step and another. To
translate iterative constructs, we need to introduce “null”
tasks to link the start and end of the loop.

For simplicity, we have ignored the possibility of
alternative procedures for the same action. However, this
can be represented by making each procedure a subtype of
the event type for the action, and the making the cue an
instance of a step of that subtype.

PPL and other Languages

PPL and PSL
A well-known standard for process representations is the
Process Specification Language (PSL) [Gruninger 04], a
logic-based standard for capturing the semantics of
processes.
PPL is intended as a complement to, rather than competitor
of, PSL, as it captures process knowledge in a different
way. The most significant difference between PPL and
PSL is that PSL's representation of the ordering of steps is
in terms of actual events ("activity occurrences"), while
PPL orders the abstract flow chart steps ("activities")
themselves. For example, in PSL the above toy plan for
going to work would be

% enter is a subactivity of going to work
(forall (?person ?car)
 (subactivity (goto-work ?person ?car)
 (enter ?person ?car)))

% driving is a subactivity of going to work
(forall (?person ?car)
 (subactivity (goto-work ?person ?car)
 (drive ?person ?car)))

% In all occurrences of going to work, a driving
occurrence
% follows a entering occurrence.
(forall (?occ ?person ?car)
 (implies (occurrence_of ?occ (goto-work ?person ?car))
 (exists (?occ1 ?occ2)
 (and (occurrence_of ?occ1 (enter ?person ?car))
 (occurrence_of ?occ2 (drive ?person ?car))
 (subactivity_occurrence_of ?occ1 ?occ)
 (subactivity_occurrence_of ?occ2 ?occ)
 (successor ?occ1 ?occ2)))))

The last axiom states that for all occurrences of going to
work, there will be an occurrence of entering followed by
an occurrence of driving. While this makes the semantics
of the original flow chart explicit, the actual structure of
the flow chart has been lost (the simple relationship “enter
→ drive” is expressed as a complex quantified logical
expression).

In principle one could perhaps recover the original flow
chart by reverse-engineering it from these PSL axioms,
either by parsing the axioms themselves1 or by theorem
proving the general relationships (e.g., proving that driving
always follows entering in goto-work). However, neither
of these options is particularly easy. In contrast, our goal
with PPL is to preserve the original flow chart structure so
that it is directly accessible for other agents. One could
imagine extending PSL to include some predicate
"macros" that would allow the general flow chart
relationships to be made explicit, and which would also
expand to the traditional PSL axioms such as those shown
above. Conversely, PSL makes explicit the actual
semantics of the flow chart, and PSL could be generated
from PPL if one wanted to make these semantics explicit
(indeed, PPL could be a “straw man” candidate for such
PSL “macros”).

PPL and OWL-S
OWL-S is a OWL-based Web service ontology, which
supplies Web service providers with a core set of markup
language constructs for describing the properties and
capabilities of their Web services in an unambiguous,
computer-interpretable form. Like PPL, OWL-S represents
generic procedures themselves, and similarly uses
individuals to denote process objects and parameters used
by those processes (In this sense, PPL is more similar to
OWL-S in approach than to PSL). Generally speaking,
OWL-S process is not a program to be executed. It is a
specification of the ways a client may interact with a
service. A process can generate and return some new
information based on information it is given and the world
state, or it can produce a change in the world. This
transition is described by the preconditions and effects of
the process. Processes can be atomic or composite. The
composite processes may have control structure such as
sequence, parallel, split, join, if-then-else, etc.

Clearly, the scope and the applicability of OWL-S is much
different from either SPARK-L or PPL. In terms of
expressiveness, OWL-S is comparable to SPARK-L as
both are expressive process description languages. OWL-
S, PPL, and SPARK-L all use similar representations for

1 Mike Gruninger reports that a group has done this for a
database application, but that this relies on an assumed
syntactic regularity in the axioms in order to make parsing
feasible [personal communication].

inputs, outputs, and results. Over and above this shared
core, PPL provides a representation for the control
structure in a process by using the followedBy relation.
The current design of PPL is limited to just that. PPL is a
subset of SPARK-L designed to support the requirements
of reasoning applications. If one were to perform a similar
reasoning over OWL-S processes, a PPL-like subset will
need to be identified in order to avoid the potential overkill
of using OWL-S in its entirety. In a similar vein, PPL has a
simple KIF-like syntax, intended to be easily generated
and processed by sending/receiving applications, both
abstracting out some details and making some implicit
semantics of SPARK-L explicit (e.g., event ordering). In
contrast, OWL-S is specifically designed to support Web-
based services, and hence uses an RDF-based syntax,
clearly appropriate for Web-based applications but
possibly more cumbersome to deal with in the wider
context of process communication. Conversely, OWL-S
(and similarly BPEL4WS, the Business Process Execution
Language for Web Services) has gone further than PPL in
defining different types of process ordering and
parallelism. Some of these constructs would be useful to
incorporate in PPL as it matures.

Experience Using PPL
PPL directly represents the steps in a procedure, the
parameters of those steps, and their ordering. This
representation allows a user's ambiguous utterances (e.g.,
”find me”) to be matched against expected tasks in the
procedure (e.g., ‘‘find_computer”) to identify the user's
intent.

We have implemented a translator from the SPARK
representation language to PPL. Using this translator, we
exported SPARK process models. Using the exported
process model, we ran a suite of tests on a dialog
interpretation module, and for answering questions. In both
cases, the system was able to resolve the user's utterances
correctly in a simple, scripted dialog, illustrating proof of
concept. Obviously, this is only a first step, but the
demonstrated feasibility of the mechanism is encouraging.

Future Plans
The work we have reported here is just an initial attempt at
developing a representation that will bridge the
requirements of executing a process, and being able to
answer questions about it. Clearly, more work needs to be
done. First, the language needs to be extended to capture a
larger subset of SPARK-L representation. The current
PPL ignores many of the details of a process model, for
example, the conditions. Second, we would also like to
use PPL for specifying and/or modifying existing
processes, e.g., through interaction with the user. This
latter goal requires reversing the information flow so that

PPL is used to generate SPARK-L, rather than the reverse.
Currently PPL is too impoverished to support this, but with
some small extensions this should be possible, so that
either the PPL contains enough information to
generate/modify a SPARK process, or suitable software
can be written to “fill in the gaps” appropriately (and
perhaps interactively) when passing information back to
the execution environment.

Although PPL is still preliminary, the general idea of
distinguishing representations for execution and
representations for introspective reasoning has proved
fruitful in our work, and one which we believe will
continue to have value as our project progresses further.

Acknowledgement
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under
Contract No. NBCHD030010. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA), or the Department of Interior-National Business
Center (DOI-NBC).

References
Myers, K. L. CPEF: A Continuous Planning and Execution
Framework. AI Magazine, vol. 20, no. 4, 1999.

Lemai, S., Ingrande, F. Interleaving Temporal Planning
and Execution in Robotics Domains, AAAI 2004, July 25-
29, 2004, San Jose, California, USA.

Morley, D. and Myers, K. The SPARK Agent Framework,
in Proc. of the Third Int. Joint Conf. on Autonomous
Agents and Multi Agent Systems (AAMAS-04), New York,
NY, pp. 712-719, July 2004.

Yeh, P., Porter, B., and Barker. K. Using Transformations
to Improve Semantic Matching. Second International
Conference on Knowledge Capture, October 23-25, 2003.

Gruninger, Michael. Ontology of the Process Specification
Language, in Handbook of Ontologies, pp575-592, Ed: S.
Staab, R. Dtuder, Berlin: Springer (2004).

Erol, K., Hendler, J., and Nau, D. Semantics for
Hierarchical Task-Network Planning. Technical Report
CS-TR-3239, Computer Science Department, University
of Maryland, 2004.

