More on Components:
Working Note 12

Peter Clark Bruce Porter
Boeing Research Department of Computer Sciences
PO Box 3707, Seattle, WA 98124 University of Texas at Austin, TX 78712
peter.e.clark@boeing.com porter@cs.utexas.edu

Feb 27th 1998

Abstract

This working note aims to develop the ideas of our earlier AAAT’97 paper [Clark and Porter, 1997]
into a more coherent implementation framework. We would like to reach the stage
where building and linking components becomes a routine task, but this requires a
concrete description of what a component data structure looks like and how it would
be used. This document aims to do this, adding in some important specifics to the
earlier work.

1 Introduction

This working note aims to develop the ideas of our earlier AAAT’97 paper [Clark and Porter, 1997]
into a more coherent implementation framework. We would like to reach the stage where
building and linking components becomes a routine task, but this requires a concrete
description of what a component data structure looks like and how it would be used.

This document aims to do this, adding in some important specifics to the earlier work.

2 Components

2.1 Architecture and Usage

The idea of a component is to encapsulate a ‘coherent’ mini-theory, which may be in-
corporated (perhaps through several different mappings, described later) in a knowledge
base (KB). The goal is to save the knowledge engineer trying to build the ‘mother of all
representations’ when building a KB, ie. trying to represent every conceivable nuiance
about the domain of interest — rather he/she encodes a number of small, coherent modules
(components), which can then be composed together to build a KB.

It is important to distinguish two separate tasks:

Specification: Specifying how one component is a composition of others. This is a task
which the knowledge engineer does.

Composition: Building the composition, ie. ‘merging’ components together in the way
which the knowledge enginer specified. This is a task which the computer does
automatically using the specifications.

Each component contributes axioms (assertions) to a composition. A composition is thus
a larger set of axioms, built subject to the mappings which the user specified.

Note that there is no longer the notion of a single, universal KB. Rather, each compo-
nent can be thought of as specifying a ‘mini KB’, which can be assembled my merging the
components it imports. If this seems strange, and you would prefer to still think in terms
of building a single KB, then arrange the components such that there is one bottom-most
component, build from all the others, which can be thought of as the Target KB to build.

Note also we're here using a slightly different notion of composition than in the
AAAT97 paper. Here, composition means simply ‘assembling the axiom set’, and doesn’t
include computing ramifications of that assembly (the latter is done at run-time in re-
sponse to user questions). Then, run-time question answering is performed by posing
questions to this set. In our particular implementation, we choose to also first load this
axiom set into a conventional Knowledge Representation System (here KM), ie. a KM
KB is built from the axiom set. This extra step can be thought of as “compiling” the ax-
iom set for efficient inference. Thus note that we are not proposing a new representation
language, but rather a more reusable way for constructing KBs in existing languages (eg.
KM, Algernon)

2.2 Anatomy of a Component

A component consists of 6 items:

:name A identifier for the component.

:description A string of text describing it.

:participants A set of objects which the component is describing.

:axioms A set of axioms (assertions) about the participants.

:import-components A set of components which this component imports.
:parameters Sometimes, it is desirable to parameterize the participants of a component.

The semantics of a component are, informally, as follows: For all instances of that com-
ponent, there exist instances of the participants such that all the axioms hold.

A simple example of a component, which does not import any other components, is
the one below. This states that a hydraulic circuit consists of a pump and an actuator,
that the pump powers the actuator, and that the pump’s output equals the actuator’s
input:

(defcomponent
:name Hydraulic-circuit
:description "A trivial model of a hydraulic circuit"
:participants
P:Pump
A:Actuator
raxioms
powers(P,A)
output(P,0) :- input(4,0)
)

with the semantics that:

forall X:hydraulic-circuit
exists
P :Pump
A:Actuator
such that
powers (P,A)
and forall 0 output(P,0) <- input(4,0)

In general, however, a component will also import other components. If a component
is imported, then the system must

e work out which participants in the imported component correspond to participants

in the importing component,

e unify those matching participants, and

e union the resulting axioms together.
We call this first step (working out the mapping between participants) as aligning the
participants of the two components. There are several ways in which this can be im-
plemented. In the AAAT’97 paper, we suggested that the knowledge engineer manually
specify the mapping by placing ‘role’ labels on each participant. However, in retrospect
this seems likely to be painful for components with very large numbers of participants)?.

Another alternative, which we adopt here (though it’s by no means the best), is to use
a unification algorithm to automatically determine which participant in one component
will match with which participant in the other component. KM already has such a mecha-
nism built in (see the && operator in the KM User Manual [Clark and Porter, 1996]). For
example, using the && operator, KM will unify the participant set {_pumpl _actuator2}
from one component with the participant set from another component {_edp3 _wing4} to
produce the unified set {_edp3 _actuator2 _wingd} (where pumpl isa pump, _actuator?2
is an actuator, _edp3 is an engine-driven pump, and _wing4 is a wing). Here, KM is using
it’s knowledge about the classes of the objects being merged to find ‘compatible’ matches.
Note that not all participants in one component need to have a corresponding partici-
pant in the other — thus an imported component may introduce extra participants into
the importing component. This unification-based approach to ‘aligning’ participants is
rather pragmatic, and has some open issues to resolve, but it’s the best we can think of
for now. One interesting aspect is that there may be more than one way in which two
participant sets can be aligned; in this case, the component can be applied in more than
one way, corresponding to viewing an object in more than one way. In this case, some
additional mechanism would be needed so that the knowledge engineer can specify which
alignment she/he intended.

Figure 1 sketches the ‘imports’ relationship that might exist between components,
based on the example described in more detail later. Figure 2 shows the composition
being computed, including aligning the participants from different components together.
The black dots denote participants explicitly declared in the local component, the white
dots denote participants imported from other components. This figure also suggests that
the final axiom set may be compiled into a more standard representational form (eg. a
KM KB) for question-answering.

The algorithm for building a composition is shown in Figure 3. The final axiom set
can then be asserted into a KM KB using KM’s also-has primitive.

! Another problem is as follows: Consider a component C importing two components C1 and C2: A
participant in one imported component C1 may map to a participant in the other imported component
C2, without that participant ever being mentioned in the importing component C! So do we create extra
participants in C for all potentially imported participants?

3

Hydraulic—-System Hydraulic—System

Side-Hydraulic—Circuit[Left] 1
AN

N

l Side—Hydraulic—Circuit[Right]
\l

Airplane-Structure

777-Aircraft

Figure 1: Example of ‘imports’ relationships between components.

Hydraulic-System Hydraulic—System _ .
P ¢ - Participants declared

o o locally in the component
]] Axioms about
-)
; \ ===~ those participants

Side—Hydraulic—Circuit[Left] \ \
N

. \ \ Si/g/e—HydrauIic—Circuit[Right]

0/0 /& = () = Participants imported
Airplane-Structure | — — from upstream component

—e

oo 0 —

777-Aircraft| —— ‘compile’ the axioms

Figure 2: Composition of the components, showing how the participants in each compo-
nent have been (automatically) aligned. The final assembly of axioms can be ‘compiled’
(asserted) into a standard knowledge-base.

PROCEDURE Build-Component (Component-Name) returning {Participants,Axioms}:
1. Create instances denoting the participants P in the component
2. For each imported component:
2a. Call Build-Component to find it’s participants P’ and axioms A’
2b. unify sets P and P’
2c. Add axioms A’ to the component’s local set A
3. Return the final set of participants P and axioms A
END-PROCEDURE

PROCEDURE Build-KB (Component)
1. Call Build-Component (Component) returning Axioms
2. For each Axiom in Axioms
- assert Axiom into the KB
END-PROCEDUREA

Figure 3: Composition algorithm.

3 Example

The following pages show four simple examples of components which connect together to
build a toy KB of an airplane. The last component (777-Aircraft) can be thought of
as “The KB”. The result of assembling it (by importing other components and aligning
their participants) is also shown.

Although most of the axioms shown for a component are ground clauses, they can be
any axiom at all — A few non-ground ones are included also for illustration purposes.

The KM representation of the components is rather clunky (although semantically
correct); it will have to do for now. Axioms are expressed as frame-slot-value triples,
where value may be an arbitrarily complex KM expression. A triple is denoted in KM
using the notation (:triple frame slot val-expr). Each triple in the final axiom set
can be asserted into a KM KB using the standard KM notation (frame also-has (slot
(val-expr))).

Component: Airplane-Structure

Synopsis

Name: Airplane-Structure

Summary: Basic physical layout of an aircraft
Parameters: (none)

Imported components: (none)

Description
Engine-driven
% pumps (EDP)
77
~
—~
// / connects connects
-~
| |

This component describes some of the physical structure of the aircraft, in particular
focussing on hydraulic components (the engine-driven pump).

Local Participants (English)

The left wing of the airplane

The right wing

The left engine-driven pump (EDP)
The right EDP

The fuselage

Local Axioms (English)

The left wing is connected to the fuselage
The right wing is connected to the fuselage
The left wing contains the left EDP

The left wing contains the right EDP

Component representation (semi-formal)

(defcomponent
:name Airplane-Structure
:description "Structure of a 777 aircraft"
:participants
LW:Wing where side(LW,left)
RW:Wing where side(RW,right)

LE:EDP where side(LE,left)
RE:EDP where side(RE,right)

F: Fuselage
raxioms

connects (LW,F)

connects (RW,F)

contains (LW,LE)

contains (RW,RE)

Component representation (KM notation)

(defcomponent

:name Airplane-Structure
:description "Structure of a 777 aircraft"

:participants (

(a Wing with (side (Left)))
(a Wing with (side (Right)))
(a Edp with (side (Left)))

(a Edp with (side (Right)))

(a Fuselage))
raxioms (

(:triple (allof

(:triple (allof

(:triple (allof

(allof
(:triple (allof

(allof

((Self participants Wing)) where ((It side) = Left))
connects (Self participants Fuselage))

((Self participants Wing)) where ((It side) = Right))
connects (Self participants Fuselage))

((Self participants Wing)) where ((It side) = Left))

contains
((Self participants EDP)) where ((It side) = Left)))
((Self participants Wing)) where ((It side) = Right))
contains
((Self participants EDP)) where ((It side) = Right))))

Component: Hydraulic-Circuit

Synopsis

Name: Hydraulic-Circuit
Summary: Generic hydraulic circuit
Parameters: (none)

Imported components: (none)

Description
—
|
@=—
Pump Actuator

P
unp out put

power s Flow—-Rate
%ut

Describes the relationship between a pump and an actuator. There are axioms here
describing the power transfer relationship (namely, the pump powers the actuator), and
constraints on the flow-rate. In a fuller implementation, these would more likely be
two separate, generalized components (one for power transfer between a producer and

consumer, and one for fluid-flow).

Local Participants (English)
e A pump
e An actuator

Local Axioms (English)

e The pump powers the actuator

e The output flow-rate of the pump equals the input flow-rate to the actuator

Component representation (semi-formal)

(defcomponent

:name Hydraulic-circuit

:participants
P:Pump
A:Actuator

raxioms
powers(P,A)
forall 0 output(P,0) :- input(4,0)

Component representation (KM notation)

(defcomponent
:name Hydraulic-circuit
:participants (
(a Pump)

(a Actuator))

raxioms (
(:triple (Self participants Pump) powers (Self participants Actuator))
(:triple (Self participants Pump) output (Self participants Actuator input))

Component: Side-Hydraulic-Circuit

Synopsis

Name: Side-Hydraulic-Circuit

Summary: The side hydraulic circuit of a 777 aircraft
Parameters: side (one of {Left,Right})

Imported components: Hydraulic-Circuit

Description

si ze -m
|
si de

si de

Flap

This component describes the presence of a hydraulic circuit on an aircraft. The imported
Hydraulic-circuit component provides the generic axioms about hydraulic circuits,
while this component maps those participants into participants of the airplane, and adds
(purely for demo purposes) the axiom that the engine-driven pump is big.

Local Participants (English)

e An engine-driven pump (EDP)
e A flap

Local Axioms (English)
e The EDP is big

Component representation (semi-formal)

(defcomponent

:name side-hydraulic-circuit
:description "The side hydraulic circuit"
:import-components (Hydraulic-circuit)
:parameters

side=W:LeftOrRight
:participants (

E:EDP vwhere side(E,W)

F:Flap where side(F,W)
raxioms (

size(E,big)

10

Component representation (KM notation)

(defcomponent
:name side-hydraulic-circuit
:description "The side hydraulic circuit"
:import-components (Hydraulic-circuit)
:parameters (
(side ((a Side))))
:participants (
(a Edp with (side ((Self side))))
(a Flap with (side ((Self side)))))
raxioms (
(:triple (Self participants Edp) size Big))

The Composition

The composition itself can be informally sketched as:

SI%NLH

Left O Ri ght power s Flow-Rate

I nput
f'ap ///////Z;

forall S:Side-Hydraulic-Circuit
exists
E: EDP
F: Flap
such that
participant(E,S)
participant(F,S)

or described as follows:

size(E,big) ; local axiom

powers (E,F) ; imported from Hydraulic-Circuit
forall O output(E,0) :- input(F,0) ; imported from Hydraulic-Circuit
side(E,X) :- side(S,X) ; local, parameterized property of E
side(F,X) :- side(S,X) ; local, parameterized property of F

Note the two axioms importred and specialized from Hydraulic-System, stating:
e The EDP powers the flap
e The output of the EDP equals the input of the flap

11

Component: 777-Aircraft

Synopsis

Name: 777-Aircraft

Summary: The whole 777-aircraft

Parameters: (none)

Imported components: Airplane-Structure, Side-Hydraulic-Circuit [Left],
Side-Hydraulic-Circuit [Right]

Description

This component is purely a composition of three other components. It doesn’t introduce
any new participants or axioms. Here we want to compose knowledge about the aircraft’s
structure and hydraulic circuits to build a composite representation

Local Participants (English)

(none)

Local Axioms (English)

(none)

Component representation (semi-formal)

(defcomponent
:name 777-aircraft
:description "The whole 777 aircraft, just looking at hydraulics"
:import-components (
Airplane-structure
Side-hydraulic-circuit[side=left]
Side-hydraulic-circuit[side=right]

Component representation (KM notation)

(defcomponent
:name 777-aircraft
:description "The whole 777 aircraft, just looking at hydraulics"
:import-components (
(a airplane-structure)
(a side-hydraulic-circuit with (side (Left)))
(a side-hydraulic-circuit with (side (Right))))

12

4 Composition

Building the fourth component here using the algorithm described earlier (Figure 3)
produces a set of axioms, which can be informally sketched and more formally expressed

as follows:

connects connects

forall A:777-aircraft

exists
LW:
RW:
LE:
RE:

Wing

Wing

EDP

EDP

LF:Flap

RF:Flap

F: Fuselage

that

participant (LW,A)
participant (RW,A)
participant (LE,A)
participant (RE,A)
participant (LF,A)
participant (RF,A)
participant (F,A)
side(LW,left) ; imported from Airplane-Structure
side(LE,left) ; imported from Airplane-Strucuture &

; Side-Hydraulic-Circuit[left]
side(LF,left) ; imported from Side-Hydraulic-Circuit[left]
side(RW,right) ; imported from Airplane-Structure
side(RE,right) ; imported from Airplane-Strucuture &

; Side-Hydraulic-Circuit [right]
side(RF,right) ; imported from Side-Hydraulic-Circuit[right]
connects (LW,F) ;

such

connects (RW,F)
contains (LW,LE)
contains (RW,RE)
powers (LE,LF)

forall 01 output(LE,01)

powers (RE,RF)

forall 02 output(RE,02)

)

>

’

13

imported from
imported from
imported from
imported from
imported from

Airplane-Structure
Airplane-Structure
Airplane-Structure
Airplane-Structure
Hydraulic-Circuit via

Side-Hydraulic-Circuit[left]

:— input(LF,01) ; from Hydraulic-Circuit via

Side-Hydraulic-Circuit[left]
; imported from Hydraulic-Circuit via
Side-Hydraulic-Circuit [right]

:— input(RF,02) ; from Hydraulic-Circuit via

; Side-Hydraulic-Circuit [right]
size(LE,big) ; imported from Side-Hydraulic-Circuit[left]
size(RE,big) ; imported from Side-Hydraulic-Circuit[right]

Note that the component Side-Hydraulic-Circuit (and thus Hydraulic-Circuit)
has been imported twice, once parameterized with side=1eft, and once with side=right,
corresponding to the two different sides of the airplane.

These axioms may then be subsequently asserted in a standard KM KB for question-
answering purposes. Question-answering may of course result in inferencing with these
axioms, including normal inheritance and classification behaviour.

5 Additional Issues and Comments for Discussion

5.1 Components and Inheritance

The use of components does not remove the need for normal inheritance-type reasoning
and an isa-hierarchy; rather components are an additional mechanism. The underlying
model here is that there is already an isa-hierarchy of concepts, and some of those concepts
already have axioms (ie. slots 4 value-expressions) attached to them. The components
then make additional assertions to the KB about interactions which exist between set of
concepts.

So when should an axiom be placed on a frame in the initial KB, and when should it
go in a component? The rule is: if an axiom describes an intrinsic (always true) property
of an object, then it should go directly into the KB. If, however, it describes an object’s
property based on it playing a role in some (conceptual) system, then it should go in a
component. These latter properties are those which do not hold for all instances of that
object type, but only those instances participating in that system.

For example, the axioms that an engine-driven pump (EDP) has weight 2.5kg (say)
and is made-of titanium (say) are (ie. will be modeled as) intrinsic properties of an EDP
— it is always the case that an EDP’s weight is 2.5kg, and thus that fact would be placed
on the EDP frame in the KB taxonomy. However, an axiom stating that the EDP is
connected to an airplane’s engine is (here modeled as) not universally true (for example,
some EDPs are in store-rooms prior to aircraft assembly, not connected to anything), but
only true for EDPs which in are part of the wing assembly — in conceptual terms, just
those EDPs participating in the system of relationships describing the wing assembly’s
physical structure. This latter axiom would thus be placed on a component for (say) “the
physical structure of a wing assembly”.

In fact, a standard frame in a KB can be thought of a component as consisting of a
single participant, eg:

(defcomponent
:name Pump
:participants
P:Pump
:axioms
weight (P,2.5)
material (P,titanium)

)

which is then imported into every other component which mentions a participant of the
same type. In fact, this is, functionally equivalent to what inheritance does anyway!

14

5.2 Questioning the KB, and Question-Specific Composition

It seems that questions are often posed in context, for example “In the wing, what is the
EDP connected to?” or “In a 777, what provides emergency hydraulic power?”. Earlier,
we suggested that a single KB might be built from some “bottom-most component”
in the component library. In fact, it seems more approprate that a question-specific
mini-KB would be synthesized for each question posed. A component can be thought of
as axiomizing objects which exist in a particular context, so given a particular context
(stated in a question) the system can build that axiomatization (by building the axiom-
set which the component specifies) and then reason with it to generate an answer to that
question. Such an axiomatization augments the “base KB” of “universally true” axioms,
describing intrinsic properties of objects in the world.

5.3 Some Issues
5.3.1 Aligning Participants

The unification approach to ‘aligning’ participants may sometimes be ambiguous: For
example, a component describing Service might have two Agents as participants (one
playing the role of a client and one of a server). When importing this component to
another also containing two agents, there’s ambiguity about which agent should match
with which.

In this case, it seems that it would be useful to add role tags to participants so that
the knowledge engineer can specify the mapping. A simple implementation trick to do
this, without requiring new syntactic extensions, is to introduce a role slot to allow
the knowledge engineer to tag participants. As the unification algorithm won’t allow
objects with incompatible slot-values to unify, this would guide the unification algorithm
appropriately. For example:

(defcomponent
:name Service
:participants
(a Agent with (role (Client)))
(a Agent with (role (Server)))
raxioms

)

(defcomponent

:name Restaurant-Visit

:import-components (Service)

:participants
(a Agent with (role (Client)))
(a Agent with (role (Server)))

raxioms
...the first Agent is hungry...
...the second Agent works for the restaurant...
etc.)

In this example, when the Service component is imported into the Restaurant-Visit

component and the participants are unified, the agent with role Server in the Restaurant-Visit

will only unify with the agent with role Server, due to these role tags attached to the
agents. This works, but still seems rather a hack — one cause of the root problem here

15

is that using unification to aligning participants ignores the :axioms in the components
— in practice, those axioms should play a role in deciding the alignment. As the method
currently stands, the system may choose an apparently valid alignment of participants,
only to later find that the axioms from the imported component contradicts those in the
importing component. There is no mechanism implemented to recover from this in the
current implementation (eg. by backtracking to try a different alignment).

5.3.2 Clunky Syntax

The KM syntax in the KM formulations shown in this paper is very clunky — it would
be much nicer to move to something more standardized. For example, I was struck how
easy it was to download the 20,000 concept WordNet ontology [Miller et al., 1993] from
the Web, which is expressed in Prolog, and start doing useful things with it in just a few
minutes.

5.3.3 Relevance and Consistency

In this implementation, the composition algorithm builds a component’s axiom set in all
its detail. An advanced topic would be to have some more sophisticated composition
algorithm which would allow some of it’s imported components to be selectively left out,
on the basis that they were irrelevant to the question being posed.

A second advanced topic would be to have, perhaps, multiple alternative components
for describing a particular phenomenon. Again, an algorithm would determine which
component was most suitable for answering the current query, and ensure that a compo-
sition was performed only with components based on non-conflicting assumptions. This
approach has already been demonstrated in compositional modeling of physical systems
[Levy, 1993].

6 Methodology for Progress

Consider taking some on-line documentation that we would like to represent (eg. the 777
hydraulics manual). Rather than trying to build the “mother of all KBs” to represent
everything, we can instead follow the conceptual organization which the documentation
provides, where, approximately, each page will be represented by one component. First
we turn to page 1; it provides (say) a description of the physical layout of the aircraft,
though biased towards hydraulics — many (but not all) hydraulic elements are shown,
while other major structural features (eg. the space for the passengers) are not. A
component is built to represent just the information conveyed on that page, the physical
parts being the component’s participants, and the relationships between the parts being
the component’s axioms. The fact that this, on its own, is a poor description of the whole
aircraft does not matter at this stage.

Now we turn to page 2 in our imaginary exercise. It provides (say) a simple overview
of the hydraulic circuits. This information is represented as a second component; some of
its axioms provide additional information about participants in the first component, oth-
ers provide information about new participants not previously mentioned. We continue
likewise for subsequent pages.

Finally, by building the composition of the components we can merge all this informa-
tion together to build “the KB”. Hopefully, the modularity that this approach provides

16

will be substantially beneficial for maintaining and further developing such a KB. Time
will tell...

References

[Clark and Porter, 1996] Clark,
P. and Porter, B. (1996). KM — the knowledge machine: Users manual. AI Lab,
Univ Texas at Austin. http://www.cs.utexas.edu/users/mfkb/manuals/userman.ps).

[Clark and Porter, 1997] Clark, P. and Porter, B. (1997). Building concept repre-
sentations from reusable components. In AAAI-97, pages 369-376, CA. AAAL
(http://www.cs.utexas.edu/users/pclark /papers/aaai97.ps).

[Levy, 1993] Levy, A. Y. (1993). Irrelevance reasoning in knowledge-based systems. Tech
report STAN-CS-93-1482 (also KSL-93-58), Dept CS, Stanford Univ., CA. (Chapter
7).

[Miller et al., 1993] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D.,
and Miller, K. (1993). Five Papers on WordNet. Prinston Univ., NJ.
(http://www.cogsci.princeton.edu/~wn/).

17

