Translating from CCALC into KM: An Example

Peter Clark
Boeing Company
peter.e.clark@boeing.com
and
Joohyung Lee, Vladimir Lifschitz and Bruce Porter
University of Texas at Austin
{appsmurf,v],porter } @cs.utexas.edu

September 15, 1999

KM (Knowledge Machine)! and CCALC (Causal Calcu-
lator)? are knowledge representation systems designed and
implemented at the University of Texas at Austin. KM is
a frame-based system; CCALC is an implementation of a
causal logic closely related to logic programming. Although
the two systems are very different from each other, a rep-
resentation of a collection of facts in one of them can be
sometimes translated into the other in a modular, straight-
forward way.

In this note we show how this can be done for the problem
of representing the following collection of assertions:

A VW Rabbit is a VW.
Tom’s car is a VW Rabbit.

"http://www.cs.utexas.edu/users/mfkb/km.html .
Zhttp://www.cs.utexas.edu/users/mccain/cc .

Dick’s car is a VW Rabbit.

A VW has an electrical system.

Part of the electrical system is an alternator.
The alternator is defective on every VW.

This is a modification of an example from [3] (pp. 293-
297). Michael Gelfond and Monica Nogueira offered this
problem as an exercise to Texas Action Group?, and Esra
Erdem responded with a formalization in the language of
CCALC. Figures 1-5 show a “translation” of that formal-
ization into the language of KM, with the original CCALC
representation shown in right column as a sequence of com-
ments.

The CCALC representation has a few elements that do
not correspond to anything in the English language asser-

*http://www.cs.utexas.edu/tag .



tions above, such as the sorts toyota and airCondSystem

and the binary predicate constant isWrong. (That symbol
can be used to ask questions of the form “What’s wrong
with X?” Any minimal defective part of X would be an ac-
ceptable answer.) These elements have been incorporated in
Erdem’s formalization in response to questions from Gelfond
and Nogueira.

The right column of Figure 1 begins with including the
standard file 1p, because CCALC is used here in the “logic
programming mode.” That file defines negation as failure in
terms of the causal logic from [2]. This directive is followed
by the declaration of eight sorts that form a tree structure,
with the most general sort object as the root. The transla-
tion into KM uses superclasses as the counterpart of the
subsort symbol >> of CCALC.

The variable declarations of CCALC are not translated
into KM at all—there are no variables in KM, although
some constructs available in KM do correspond to the use
of bound variables in classical logic. (In particular, the key-
word It plays the role of a variable.)

At the end of the right column we see three constant dec-
larations. They are translated into KM in a straightforward
way, using instance-of.

The right column of Figure 2 shows the declarations of
three function constants. The symbol es represents the
function that turns every Volkswagen into its electric sys-
tem. In KM, it turns into a slot, that is, binary predicate—
the graph of the corresponding function. By imposing the
condition cardinality (1-to-1) we make this predicate
the graph of a partial function; by adding that every Volks-
wagen has an electric system, we make this function total.
The declarations of alt and ac are translated into KM in a

2

similar way.

In Figure 3, declarations of predicate constants—both bi-
nary and unary—turn into slot declarations.

The right column of Figure 4 begins with logic program-
ming definitions of the binary predicates part (as the transi-
tive closure of the “immediate part” relation part0 defined
in Figure 5) and isWrong. As proposed in [1], these rules
distinguish between negation as failure (not) and classical
negation (-). The first two rules provide sufficient conditions
for part, and the third rule expresses the closed world as-
sumption (CWA): part (X,Y) is false if there is no evidence
to the contrary. The definition of isWrong has a similar
structure. The CWA for binary predicates is built in the
semantics of KM, so that the CWA rules do not need to be
translated.

Note the difference between the KM representations of the
atoms defective (X) and partsOK(X) occurring in the logic
programming definition of isWrong: the former is translated
as

(the defective of It)

(1)

t,

and the latter as

(the partsOK of It) / = f. (2)
This is related to the difference between the representation
methods used here for defective and partsOK, which is
discussed below.

The remaining rules in the right column define two unary
predicates: partsOK and (in combination with the last rule
of Figure 5) defective. The definition of partsOK differs
from the others in that it gives a sufficient condition for the
negation of the predicate and is followed by the “inverse”



closed-world assumption: parts0K(X) is true if there is no
evidence to the contrary.

Our KM formulation reflects this difference by us-
ing different representation conventions for the predicates
defective and partsOK. The former is represented by the
set of all pairs formed from a defective object and the truth
value t. The latter is represented by the set of the pairs
formed from an object that does not have the property in
question and the truth value f. This difference explains why
we write = t in (1) and /= f in (2).

The translations of the logic programming definition of
partO and of the last rule for defective in Figure 5 are
similar to the translations shown in Figure 4.

Our aim here has been to produce, as far as possible, a
“literal” translation of the CCALC formalization in KM.
However, the result is not necesarily the best stylistically
(although here it seems fairly parsimonious). For example,
instead of distributing statements about the car’s parton-
omy among the slots alt, es and ac, we could have gath-
ered them as a collection of nested frames on the partO slot
(where the nesting reflects the partonomic hierarchy).

(every vw has
(part0 ((a electricSystem with
(part0 ((a alternator with
(defective (£)))))))))

Then, the alt, es and ac slots could either contain KM
paths pointing to the respective parts on the partO slot,

e.g., the electricSystem part0 of Self, or be omitted
entirely.

As a note of interest, this issue is not specific to CCALC
and KM, but often arises in any language-to-language trans-

lation: literal translations do not necessarily produce results
which follow the target language’s idiomatic style, are par-
simonious and easily comprehensible, and which the target
language’s inference engine can handle efficiently (or han-
dle at all). This fact has been a major obstacle for defining
automatic language-to-language translators [4].

References

[1] Michael Gelfond and Vladimir Lifschitz. Classical nega-
tion in logic programs and disjunctive databases. New
Generation Computing, 9:365-385, 1991.

[2] Norman McCain and Hudson Turner. Causal theories of
action and change. In Proc. AAAI-97, pages 460-465,
1997.

[3] Neil C. Rowe. Artificial Intelligence Through Prolog.
Prentice Hall, 1988.

[4] Michael Uschold, Michael Healy, Keith Williamson,
Peter Clark, and Steve Woods. Ontology reuse
and application. In Nichola Guarino, editor,
Proc. Int’l Conf. on Formal Ontology in Information
Systems—FOIS’98 (Frontiers in AI and Applications,
Vol. 46), pages 179-192, Amsterdam, 1998. IOS Press.
(http://www.cs.utexas.edu/users/pclark /papers).



(car has (superclasses (object)))
(vw has (superclasses (car)))

(vwRabbit has (superclasses (vw)))
(toyota has (superclasses (car)))

(electricSystem has (superclasses (object)))
(alternator has (superclasses (object)))
(airCondSystem has (superclasses (object)))

(mikesCar has (instance-of (toyota)))
(dicksCar has (instance-of (vwRabbit)))
(tomsCar has (instance-of (vwRabbit)))

Figure 1: Volkswagen Domain, Part 1

:— sorts

:- include ’1p’.

object >> ((car

>> ((vw
>> vwRabbit);
toyota)) ;
electricSystem;
alternator;
airCondSystem) .
:— variables
X, Y, Z :: object;
Cl :: car;
VW :: vw;
AC :: airCondSystem;
ES :: electricSystem;
Alt alternator.
:—- constants
mikesCar :: toyota;
dicksCar :: vwRabbit;
tomsCar :: vwRabbit;



(es has
(instance-of (Slot))
(cardinality (1-to-1)))

(every vw has
(es ((a electricSystem))))

(alt has
(instance-of (Slot))
(cardinality (1-to-1)))

(every vw has
(alt ((a alternator))))

(ac has
(instance-of (Slot))
(cardinality (1-to-1)))

(every car has
(ac ((a airCondSystem))))

; es (vw)

; alt (vw)

; ac(car)

Figure 2: Volkswagen Domain, Part 2

:: electricSystem;

:: alternator;

:: airCondSystem;



(part0 has ; partO(object,object) :: atomicFormula;
(instance-of (Slot))) ;

(part has ; part(object,object) :: atomicFormula;
(instance-of (Slot))) ;

(isWrong has ; isWrong(object,object) :: atomicFormula;
(instance-of (Slot))) ;

(partsOK has ; partsOK(object) :: atomicFormula;
(instance-of (Slot))) ;

(defective has ; defective(object) :: atomicFormula;
(instance-of (Slot))) H

Figure 3: Volkswagen Domain, Part 3



(every object has ;
(part ((the part0O of Self) ; part(X,Z) <- part0(X,Z).
(the part of (the part0 of Self)))) ; part(X,Z) <- partO0(X,Y), part(Y,Z).

; —part(X,Y) <- not part(X,Y).

(isWrong ((allof (the part of Self) ; isWrong(X,Y) <- part(X,Y),
where (((the defective of It) = t) ; defective(X),
and ((the partsOK of It) /= £))))) ; parts0K(X) .

; —isWrong(X,Y) <- not isWrong(X,Y).
(partsO0K ((if ((the defective of ; —partsOK(Z) <- part(X,2),
(the part of Self))) ; defective (X).
then f))) ;

; partsOK(X) <- not -partsOK(X).

(defective ((the defective of ; defective(X) <- part(Z,X),
(the part of Self))))) ; defective(Z).

; —defective(X) <- not defective(X).

Figure 4: Volkswagen Domain, Part 4



(every vw has ; partO(es(VW),VW) <- true.
(part0 ((the es of Self)))) ;

(every vw has ; part0(alt (VW) ,es(VW)) <- true.
(es ((a electricSyStem with

(part0 ((the alt of Self))))))) ;

(every car has ; partO(ac(C1),Cl) <- true.
(part0 ((the ac of Self)))) ;

; —part0(X,Y) <- not partO(X,Y).

(every vw has ; defective (alt(VW)) <- true.
(alt ((a alternator with (defective (t)))))) ;

Figure 5: Volkswagen Domain, Part 5



